Question

A 200-turn rectangular coil having dimensions of 3.0 cm by 6.0 cm is placed in a...

A 200-turn rectangular coil having dimensions of 3.0 cm by 6.0 cm is placed in a uniform magnetic field of magnitude 0.76 T. (a) Find the current in the coil if the maximum torque exerted on it by the magnetic field is 0.14 N · m. A (b) Find the magnitude of the torque on the coil when the magnetic field makes an angle of 25° with the normal to the plane of the coil. N · m

Homework Answers

Answer #1

here,

number of turns , N = 200 turns

area , A = 3 cm * 6 cm = 18 cm^2 = 18 * 10^-4 m^2

magnetic feild , B = 0.76 T

a)

let the current in the coil be I

maximum torque , Tm = N * I * A * B

0.14 = 200 * I * 18 * 10^-4 * 0.76

solving for I

I = 0.51 A

the current in the coil is 0.51 m

b)

theta = 25 degree

the magnitude of the torque on the coil when the magnetic field makes an angle of 25 degree with the normal to the plane of the coil , T = Tm * sin(theta)

T = 0.14 * sin(25) = 0.059 N.m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The figure shows a rectangular, 22-turn coil of wire, of dimensions 9.3 cm by 3.9 cm....
The figure shows a rectangular, 22-turn coil of wire, of dimensions 9.3 cm by 3.9 cm. It carries a current of 0.14 A and is hinged along one long side. It is mounted in the xy plane, at an angle of 30° to the direction of a uniform magnetic field of magnitude 0.69 T. Find the (a) x, (b) y, and (c) z components of the torque acting on the coil about the hinge line.
Figure 4 shows a rectangular 95.0 turns coil of wire of dimensions 50 cm by 30...
Figure 4 shows a rectangular 95.0 turns coil of wire of dimensions 50 cm by 30 cm. It carries a current of 1.5 A in the counterclockwise direction. It is mounted in the x-y plane. The magnetic field makes an angle of θ= 41.0° with the positive x-axis and magnitude 1.2 T. Calculate the orientation energy of the coil in the magnetic field.
A 80.0 turn circular coil of radius 5.00 cm can be oriented in any direction in...
A 80.0 turn circular coil of radius 5.00 cm can be oriented in any direction in a uniform magnetic field having a magnitude of 0.400 T. The coil carries a current of 30.0 mA. a) What is the magnitude of the maximum possible torque exerted on the coil? b) For the condition in part (a), what is the orientation energy?
A closely wound rectangular coil of 95.0 turns has dimensions of 22.0 cm by 49.0 cm....
A closely wound rectangular coil of 95.0 turns has dimensions of 22.0 cm by 49.0 cm. The plane of the coil is rotated from a position where it makes an angle of 35.0 ∘ with a magnetic field of 1.20 T to a position perpendicular to the field. The rotation takes 0.120 s. What is the average emf induced in the coil?
A circular coil with 200 turns has a radius of 2.0 cm. (a) What current through...
A circular coil with 200 turns has a radius of 2.0 cm. (a) What current through the coil results in a magnetic dipole moment of 3.0 Am2 ? (b) What is the maximum torque that the coil will experience in a uniform field of strength ? (c) If the angle between µ and B is 45°, what is the magnitude of the torque on the coil? (d) What is the magnetic potential energy of coil for this orientation?
A circular coil consits of N=14 loops each of diameter 1.0 m. the coil is placed...
A circular coil consits of N=14 loops each of diameter 1.0 m. the coil is placed in a external magnetic field of 0.5T. The angle between the normal to the plane of the coil and the magnitic field is 45 degrees. Calculate the torque in Nm in exerted by the magnetic field on the coil when i=6A
A 20-turn coil with a diameter of 6.00 cm is placed in a constant, uniform magnetic...
A 20-turn coil with a diameter of 6.00 cm is placed in a constant, uniform magnetic field of 1.00 T directed perpendicular to the plane of the coil. Beginning at time t = 0 s, the field is increased at a uniform rate until it reaches 1.30 T at t = 10.0 s. The field remains constant thereafter. 1) What is the magnitude of the induced emf in the coil at t < 0 s? 2) What is the magnitude...
A 28-turn coil with a diameter of 6.00 cm is placed in a constant, uniform magnetic...
A 28-turn coil with a diameter of 6.00 cm is placed in a constant, uniform magnetic field of 1.00 T directed perpendicular to the plane of the coil. Beginning at time t = 0 s, the field is increased at a uniform rate until it reaches 1.30 T at t = 10.0 s. The field remains constant thereafter. What is the magnitude of the induced emf in the coil at the following times? (a)    t < 0 s mV (b)    t =...
A 10-turn coil of wire having a diameter of 1.0 cm and a resistance of 0.60?...
A 10-turn coil of wire having a diameter of 1.0 cm and a resistance of 0.60? is in a 1.0 mT magnetic field, with the coil oriented for maximum flux. The coil is connected to an uncharged 3.0?F capacitor rather than to a current meter. The coil is quickly pulled out of the magnetic field. A) Afterward, what is the voltage across the capacitor?
A 22-turn circular coil of radius 5.00 cm and resistance 1.00 ? is placed in a...
A 22-turn circular coil of radius 5.00 cm and resistance 1.00 ? is placed in a magnetic field directed perpendicular to the plane of the coil. The magnitude of the magnetic field varies in time according to the expression B = 0.010 0t + 0.040 0t2, where B is in teslas and t is in seconds. Calculate the induced emf in the coil at t = 5.40 s. mV
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT