Question

When current is run through a hydrogen lamp it glows specific wavelengths. The two primary wavelengths...

When current is run through a hydrogen lamp it glows specific wavelengths. The two primary wavelengths where light is emitted are 486nm (blue) and 656 nm (red). You use this light to illuminate a diffraction grating with 500 lines/mm located 1.50 m from a screen. What is the distance between the blue and red fringes? Which is closer to the central maximum?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656...
The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656 nm (red) and 486 nm (blue). Light from a hydrogen lamp illuminates a diffraction grating with 500 lines per mm, and the light is observed on a screen 1.50 m behind the grating. What is the distance between the first-order red and blue fringes?
The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656...
The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656 nm(red) and 486 nm (blue). Light from a hydrogen lamp illuminates a diffraction grating with 500 lines per mm, and the light is observed on a screen 1.50 m behind the grating. What is the distance between the first-order red and blue fringes?
The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656...
The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656 nm (red) and 486 nm (blue). Light from a hydrogen lamp illuminates a diffraction grating with 550 lines/mm , and the light is observed on a screen 1.7 m behind the grating. What is the distance between the first-order red and blue fringes?
The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656...
The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656 nmnm (red) and 486 nmnm (blue). Light from a hydrogen lamp illuminates a diffraction grating with 500 lines per mm, and the light is observed on a screen 1.50 mm behind the grating. What is the distance between the first-order red and blue fringes? Express your answer in centimeters to three significant figures.
The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656...
The two most prominent wavelengths in the light emitted by a hydrogen discharge lamp are 656 nm(red) and 486 nm (blue). Light from a hydrogen lamp illuminates a diffraction grating with 500 lines/mm , and the light is observed on a screen 1.3 m behind the grating. What is the distance between the first-order red and blue fringes? Answer in terms of cm Express your answer to two significant figures and include the appropriate units.
The two most prominent wavelengths in the light emitted by a helium discharge lamp are 686.7...
The two most prominent wavelengths in the light emitted by a helium discharge lamp are 686.7 nm (red) and 587.6 nm (yellow). Light from a helium lamp illuminates a diffraction grating with 750 lines/mm, and the light is observed on a screen 50 cm behind the grating. What is the distance between the first-order red and yellow fringes? Express your answer in cm.
Light from a Hydrogen lamp is focused through a diffraction grating with 770 lines/cm and the...
Light from a Hydrogen lamp is focused through a diffraction grating with 770 lines/cm and the diffraction pattern is shown on a screen that is 5.30 m away. You notice in the pattern that there are two distinct purple dots that are 16.46 cm and 17.70 cm from the central maximum, corresponding to the first-order maxima for two different wavelengths of light emitted by the lamp. What is the difference between the two wavelengths (in nm) corresponding to these purple...
The wavelengths of the four visible lines in the Balmer series of light emitted by a...
The wavelengths of the four visible lines in the Balmer series of light emitted by a hydrogen gas-discharge lamp are equal to 656.279 nm, 486.135 nm, 434.0472 nm and 410.1734 nm. A diffraction grating of width 1 cm has 2000 lines. It is used to measure the four visible wavelengths. (a) Determine the first-order diffraction angles of these four lines. (b) What is the angular width of each one of the four lines. (c) How many orders could be observed...
Helium atoms emit light at several wavelengths. Light from a helium lamp illuminates a diffraction grating...
Helium atoms emit light at several wavelengths. Light from a helium lamp illuminates a diffraction grating and is observed on a screen 50.00 cm behind the grating. The emission at wavelength 501.5 nm creates a first-order bright fringe 21.90 cm from the central maximum. What is the wavelength of the bright fringe that is 26.63 cm from the central maximum?
The spectrum of light from heated up hydrogen gas has only a few wavelengths present. These...
The spectrum of light from heated up hydrogen gas has only a few wavelengths present. These are known as spectral lines. It includes a red line at 656 nm and a blue-violet line at 434 nm. What are the angular separations between these two spectral lines for all visible orders obtained with a diffraction grating that has 4770 grooves/cm? (In this problem assume that the light is incident normally on the grating.) I'm having trouble with this question as I'm...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT