Question

The hill is covered in gravel so that the truck's wheels will slide up the hill...

The hill is covered in gravel so that the truck's wheels will slide up the hill instead of rolling up the hill. The coefficient of kinetic friction between the tires and the gravel is ?k. This design has a spring at the top of the ramp that will help to stop the trucks. This spring is located at height h. The spring will compress until the truck stops, and then a latch will keep the spring from decompressing (stretching back out). The spring can compress a maximum distance x because of the latching mechanism. Your job is to determine how strong the spring must be. In other words, you need to find the spring constant so that a truck of mass mt, moving at an initial speed of v0, will be stopped.

For this problem, it is easiest to define the system such that it contains everything: Earth, hill, truck, gravel, spring, etc. In all of the following questions, the initial configuration is the truck moving with a speed of v0 on the level ground, and the final configuration is the truck stopped on the hill with the spring compressed by an amount x. The truck is still in contact with the spring. Solve all of the questions algebraically first. Then use the following values to get a number for the desired answer.

mt = 12000.0 kg
v0 = 61.0 m/s
x = 3.5 meters
h = 45.0 meters
?k = 0.60
? = 37.8 degrees
L = 10.4 meters

What is the total work done on the system?

Find the change in gravitational potential energy. Since the final goal of this problem is to find the minimum spring constant, assume that the spring will compress to its maximum value.

Find the change in thermal energy of the system. Note: The region under the spring also has gravel under it.

What is the change in translational kinetic energy of the system?

Using all of the information from above, determine the minimum spring constant necessary to stop the truck.

In this configuration, what magnitude of force will the latch have to withstand to keep the spring compressed?

Homework Answers

Answer #1

Kindly note please cross check the calculations. All formula are correct.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A rifle bullet with mass 15.0 g strikes and embeds itself in a block of mass...
A rifle bullet with mass 15.0 g strikes and embeds itself in a block of mass 1.500 kg that rests on a frictionless, horizontal surface and is attached to a coil spring. The spring was relaxed at the beginning. The spring constant is 550 N/m. The initial velocity of the bullet was 700 m/s. The impact compresses the spring by x (see figure below). 1) Find the magnitude of the block's velocity (with the bullet stuck inside) after the impact...
Mazur 9.40: Two identical 0.50 kg carts, each 0.10 m long, are at rest on a...
Mazur 9.40: Two identical 0.50 kg carts, each 0.10 m long, are at rest on a low-friction track and are connected by a spring that is initially at its relaxed length of 0.50 m and is of negligible inertia. You give the cart on the left a push to the right (that is, toward the other cart), exerting a constant 5.0-N force. You stop pushing at the instant when the cart has moved 0.40 m. At this instant, the relative...
Finding the Spring Constant We can describe an oscillating mass in terms of its position, velocity,...
Finding the Spring Constant We can describe an oscillating mass in terms of its position, velocity, and acceleration as a function of time. We can also describe the system from an energy perspective. In this experiment, you will measure the position and velocity as a function of time for an oscillating mass and spring system, and from those data, plot the kinetic and potential energies of the system. Energy is present in three forms for the mass and spring system....
Two boxes are stacked, with box B placed on top of box A. If box A...
Two boxes are stacked, with box B placed on top of box A. If box A is pushed such that both boxes move with a decreasing speed, is there any friction on either box? (a) Kinetic friction on box A and no friction on box B (b) Kinetic friction on box A and static friction on box B (c) Kinetic friction on box A and kinetic friction on box B (d) Static friction on box A and kinetic friction on...
do all five questions Question 1 20 pts Ignoring the effects of air resistance, if a...
do all five questions Question 1 20 pts Ignoring the effects of air resistance, if a ball falls freely toward the ground, its total mechanical energy Group of answer choices increases remains the same not enough information decreases Flag this Question Question 2 20 pts A child jumps off a wall from an initial height of 16.4 m and lands on a trampoline. Before the child springs back up into the air the trampoline compresses 1.8 meters. The spring constant...
Learning Goal: To understand how to apply the law of conservation of energy to situations with...
Learning Goal: To understand how to apply the law of conservation of energy to situations with and without nonconservative forces acting. The law of conservation of energy states the following: In an isolated system the total energy remains constant. If the objects within the system interact through gravitational and elastic forces only, then the total mechanical energy is conserved. The mechanical energy of a system is defined as the sum of kinetic energy K and potential energy U. For such...
21) A person carries a 25.0-N rock through the path shown in the figure, starting at...
21) A person carries a 25.0-N rock through the path shown in the figure, starting at point A and ending at point B. The total time from A to B is 1.50 min. How much work did gravity do on the rock between A and B? A) 625 J B) 20.0 J C) 275 J D) 75 J E) 0 J 22) A person carries a 2.00-N pebble through the path shown in the figure, starting at point A and...
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...
1) Describe an example of each of the following that may be found of your kitchen:...
1) Describe an example of each of the following that may be found of your kitchen: Explain how your choice falls into this category, and if there is a chemical name or symbol for it, provide that as well. Provide a photo of your example with your ID card in it. a) a compound b) a heterogeneous mixture c) an element (symbol) Moving to the Caves… Lechuguilla Caves specifically. Check out this picture of crystals of gypsum left behind in...