Question

1. Voltage across the battery in the figure is Group of answer choices 20 V 40...

1.

Voltage across the battery in the figure is

Group of answer choices

20 V

40 V

50 V

30 V

2.

Current flowing through the battery in the above circuit will approximately be

Group of answer choices

12.2 A

20.5 A

10.0 A

6.2 A

3.

A few of 2 Ω resistors are to be connected so that 5.5 A current flows through a circuit driven by a voltage source of 110 V. How can this be done?

Group of answer choices

Twenty 2 Ω resistors connected in parallel             

Ten 2 Ω resistors connected in series   

Ten 2 Ω resistors connected in parallel             

Five 2 Ω resistors connected in series   

4.

Two capacitors C1 = 12.0 pF and C2 = 16.0 pF are connected in parallel across a potential difference V = 120 V . The charges on C1 and C2 will be

Group of answer choices

2.22 nC, 4.42 nC

0.72 nC, 1.40 nC

1.44 nC, 1.92 nC

9.6 0nC, 9.60 nCv

5.

Two capacitors C1 = 32.0 pF and C2 = 16.0 pF are connected in series across a potential difference of 1 kV. Therefore the magnitude of charges on each capacitor will approximately be (q = CV, C → Ceq )

Group of answer choices

22.0 nC

8.0 nC

11.0 nC

18.0 nC

Homework Answers

Answer #1

Problems 1,2,3 requires figure which is missing...I have provided solution for 4 and 5... Hope it helps... please

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two identical capacitors C1 and C2 are connected in series with a battery with voltage V....
Two identical capacitors C1 and C2 are connected in series with a battery with voltage V. A dielectric is inserted between the plates of C2. A) Does inserting the dielectric increase or decrease the capacitance of C2? Explain. B) Does inserting the dielectric increase or decrease the equivalent capacitance of the two capacitor system? Explain. C) Is there more charge on the capacitors before or after the dielectric is inserted? Explain. D) Which system has a larger potential drop across...
A capacitor C1 is connected to a battery and charged to a voltage 180.0 V. It...
A capacitor C1 is connected to a battery and charged to a voltage 180.0 V. It is then disconnected from the battery and connected in parrallel to another capacitor C2 which is initially uncharged. After connection, the potential across C1 drops to 127.5 V. If C1= 30.0 µF find the capacitance of C2.
Assume you are given two resistors with resistances R1=4.0 kΩ and R2=6.0 kΩ and two capacitors...
Assume you are given two resistors with resistances R1=4.0 kΩ and R2=6.0 kΩ and two capacitors with capacitances C1=4.0 µF and C2=6.0 µF. a) Calculate the equivalent resistances Req and the equivalent capacitance Ceq if the resistors are connected in series and the capacitors are connected in parallel. b) Now, use the Req and Ceq that you calculate in part (a) to construct an RC circuit. If an emf of 27 V is suddenly applied across Req and Ceq, calculate...
Two parallel-plate capacitors C1 and C2 are connected in series to a battery. Both capacitors have...
Two parallel-plate capacitors C1 and C2 are connected in series to a battery. Both capacitors have the same plate area of 3.40 cm2 and plate separation of 2.65 mm. However, the first capacitor C1 is filled with air, while the second capacitor C2 is filled with a dielectric that has a dielectric constant of 3.40. The total charge on the series arrangement is 13.8 pC. (a) What is the battery voltage? V (b) What is the potential difference across each...
Assume you are given two resistors with resistances R1=4.0 kΩ and R2=6.0 kΩ and two capacitors...
Assume you are given two resistors with resistances R1=4.0 kΩ and R2=6.0 kΩ and two capacitors with capacitances C1=4.0 µF and C2=6.0 µF. a)      Calculate the equivalent resistances Req and the equivalent capacitance Ceq if the resistors are connected in parallel and the capacitors are connected in series. b)      Now, use the Req and Ceq that you calculate in part (a) to construct an RC circuit. If an emf of 27 V is suddenly applied across Req and Ceq, calculate...
Draw a circuit using schematic symbols with a 10.0 v battery, a switch, a R=10Ω resistor,...
Draw a circuit using schematic symbols with a 10.0 v battery, a switch, a R=10Ω resistor, and capacitors C1= 4.00 µF and C2= 8.00 µF in series. What is the maximum charge stored in each capacitor and the voltage across each capacitor?
Now let’s look at a specific problem involving series and parallel combinations of capacitors. Two capacitors,...
Now let’s look at a specific problem involving series and parallel combinations of capacitors. Two capacitors, one with C1=6.0μF and the other with C2=3.0μF, are connected to a potential difference of Vab=18V. Find the equivalent capacitance, and find the charge and potential difference for each capacitor when the two capacitors are connected (a) in series and (b) in parallel. PART A: Repeat this example for  Vab=18V and C1=C2=10μF. What is the equivalent capacitance for the capacitors when they are connected in...
For the system of capacitors shown in the figure below, find the following. (Let C1 =...
For the system of capacitors shown in the figure below, find the following. (Let C1 = 9.00 µF and C2 = 1.00 µF.) A circuit consists of a 90.0 V battery and four capacitors. The wire begins at the positive terminal of the battery and splits into two parallel branches before reconnecting and then ending at the negative terminal of the battery. Each branch contains two capacitors in series. One branch contains a capacitor labeled C1 followed by a 6.00...
114a-three capacitors C1,C2,C3 connected in series across DC voltage source of 15V. the corresponding values of...
114a-three capacitors C1,C2,C3 connected in series across DC voltage source of 15V. the corresponding values of the capacitances are C1=8UF,C2=1UF, C3=3UF draw the equivalent circuit and calculate the a-equivalent capacitance of the circuit b-charge of each capacitor 114b-two capacitors are connected in series giving an equivalent capacitance of 60uF, the total charge for the equivalent capacitance is 15x10-3 calculate the stored energy in the capacitor
A battery is connected purely in parallel to three capacitors of C1 = 6 micro-farads, C2...
A battery is connected purely in parallel to three capacitors of C1 = 6 micro-farads, C2 = 9 micro-farads, and C3 = 11 micro-farads. Then, one additional capacitor of 8 micro-farads is added in parallel to the other three capacitors and due to this, the total stored energy of all the capacitors increases by 196 micro-joules (it is 196 micro-joules larger with four capacitors compared to with three capacitors). Then, the same four capacitors are connected in SERIES to the...