Question

A rectangular loop of wire measuring 0.5m by 0.5m is lying flat on a table in...

A rectangular loop of wire measuring 0.5m by 0.5m is lying flat on a table in a region of an external B-field (2.0 T) that points directly into the table. You grab this loop of wire and pull it sideways, completely moving it out of the region of the external B-field in 1.5s. While you are pulling it out, an e.m.f. (and a current) is induced in the loop of wire. What is the average magnitude of the e.m.f. generated? What is the direction of the current induced in the loop when looking down from the top? help me how to solve this problem with diagram and explain one possible way to evaluate the answer.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A single loop of aluminum wire, lying flat in a plane, has an area of 8.00...
A single loop of aluminum wire, lying flat in a plane, has an area of 8.00 cm2 and a resistance of 2.50 Ω. A uniform magnetic field points perpendicular to the plane of the loop. The field initially has a magnitude of 0.500 T, and the magnitude increases linearly to 2.00 T in a time of 2.00 s. What is the induced current (in mA) in the loop of wire over this time?
In a circular loop of wire lying on a horizontal floor, the current is constant and,...
In a circular loop of wire lying on a horizontal floor, the current is constant and, to a person looking downward on the coil, has a counterclockwise direction. What is the direction of the magnetic field at the center of the circle due to this current?
Part of a single rectangular loop of wire with dimensions shown in the (Figure 1) is...
Part of a single rectangular loop of wire with dimensions shown in the (Figure 1) is situated inside a region of uniform magnetic field of 0.470T . The total resistance of the loop is 0.610? . Part A Calculate the force required to pull the loop from the field (to the right) at a constant velocity of 6.20m/s . Neglect gravity.
Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 170 cmcm...
Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 170 cmcm , but its circumference is decreasing at a constant rate of 14.0 cm/scm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 0.800 TT , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop A. Find the...
Given a 0.5 x 0.3 m rectangular current loop carrying 5 A of current, A) what...
Given a 0.5 x 0.3 m rectangular current loop carrying 5 A of current, A) what is the magnitude of the magnetic dipole moment of the loop? B) If the loop is lying flat on this page with the current running clockwise around the loop, what is the direction of the magnetic diploe moment vector? 11. In the previous problem, if the magnetic field, B = 0.5 T is oriented in the +y-direction (toward the top of this page), then...
Imagine that you have a closed loop of wire sitting on a table and a bar...
Imagine that you have a closed loop of wire sitting on a table and a bar magnet in your hand. You are allowed to move the magnet any way you’d like, but you may not touch the wire. Is there a way for you to produce a current in the wire? If so, how can you do it? If not, why not? Imagine you have two wire loops lying next to each other on a table. The first one is...
6: A single-turn circular loop of wire rests flat on this page. A magnetic field is...
6: A single-turn circular loop of wire rests flat on this page. A magnetic field is directed perpendicular to this page pointing outwards (towards you). When the magnetic field strength increases from 3.2 T to 6.5 T in 0.026 seconds, a 1 V emf is induced in the coil. a) Calculate the radius of the loop. b) State the direction of the induced current and briefly explain how you arrived at your answer.
Imagine you have two wire loops lying next to each other on a table. The first...
Imagine you have two wire loops lying next to each other on a table. The first one is connected to a DC power supply (like a battery), producing a constant current through the wire, which in turn produces a magnetic field. The second wire loop reacts to this magnetic field according to Faraday's law. Does the second wire loop have any current flowing through it? Why/how is this situation different than with the AC power supply in the previous question?
Consider a rectangular "loop" of iron wire that is placed in a uniform magnetic field of...
Consider a rectangular "loop" of iron wire that is placed in a uniform magnetic field of magnitude 29T  pointing in the positive z -direction. At t=  4s , the ring is sitting in a magnetic field pointing in the positive z -direction whose magnitude changes linearly from 15T  at t=  4s  to 26T  at t=  9s . In which direction does the induced magnetic field coming from the induced current in the ring point at t=  6.5s ? In the positive x -direction. In the negative x -direction....
A loop of wire lies on the table. The north end of a magnet is moved...
A loop of wire lies on the table. The north end of a magnet is moved toward the loop from above. a) Draw a diagram of the situation. b) In which direction is the induced magnetic field? Explain your answer. i) Up ii) Down c) As viewed from above, in which direction is the induced current? Explain your answer. i) Counter-clockwise ii) Clockwise
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT