Question

An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes...

An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes from an initial volume of 259.4×10−6 m3 to a final volume of 110.6×10−6 m3 . If 8070 J is released by the gas during this process, what are the temperature ? and the final pressure ?? of the gas?

?= K

?f= Pa

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An ideal gas is brought through an isothermal compression process. The 3.00 mol3.00 mol of gas...
An ideal gas is brought through an isothermal compression process. The 3.00 mol3.00 mol of gas goes from having an initial volume of 240.7 cm3240.7 cm3 to 104.6 cm3.104.6 cm3. If 2.210×103 cal2.210×103 cal is released by the gas during this process, what are the temperature ?T of the gas and the final pressure ?f?pf? The gas constant is ?=8.31 J/mol⋅K,R=8.31 J/mol⋅K, and there are 4.19 J/cal.4.19 J/cal. ?=T= K ?
An ideal gas is brought through an isothermal compression process. The 2.00 moles of gas go...
An ideal gas is brought through an isothermal compression process. The 2.00 moles of gas go from having an initial volume of 219.8 cm3 to 120.5 cm3. If 2182 cal are released by the gas during this process, what are the temperature T of the gas and the final pressure pf?
A vessel with a movable piston contains 1.90 mol of an ideal gas with initial pressure...
A vessel with a movable piston contains 1.90 mol of an ideal gas with initial pressure Pi = 2.03 ✕ 105 Pa, initial volume Vi = 1.00 ✕ 10−2 m3, and initial temperature Ti = 128 K. (a) What is the work done on the gas during a constant-pressure compression, after which the final volume of the gas is 2.50 L? J (b) What is the work done on the gas during an isothermal compression, after which the final pressure...
An ideal gas goes through the following two-step process. 1) The container holding the gas has...
An ideal gas goes through the following two-step process. 1) The container holding the gas has a fixed volume of 0.240 m3 while the pressure of the gas increases from 2.00×105 Pa to 4.00×105 Pa . 2) The container holding the gas is then compressed to a volume of 0.150 m3 while maintaining a constant pressure of 4.00×105 Pa . Part A What is the total work done by the gas for this two-step process?
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to...
Suppose 4.00 mol of an ideal gas undergoes a reversible isothermal expansion from volume V1 to volume V2 = 8V1 at temperature T = 300 K. Find (a) the work done by the gas and (b) the entropy change of the gas. (c) If the expansion is reversible and adiabatic instead of isothermal, what is the entropy change of the gas?
ir is mostly a mixture of diatomic oxygen and nitrogen; treat it as an ideal gas...
ir is mostly a mixture of diatomic oxygen and nitrogen; treat it as an ideal gas with ?=1.40, ?v =20.8J⋅mol−1⋅K−1. Theuniversalgasconstantis?=8.315J⋅mol−1 K−1. The compression ratio of a diesel engine is 15:1, meaning that air in the cylinders is compressed to 1/15 of its initial volume. If the initial pressure is 1.01 × 105 Pa and the initial temperature is 300 K, find: i) The final temperature after adiabatic compression. ii) The final pressure after adiabatic compression. iii) How much work...
a.) In an Isothermal process the temperature stays thes same as the volume and pressure are...
a.) In an Isothermal process the temperature stays thes same as the volume and pressure are allowed to change. In such a proces the work is found by W=nRTln (VfVi), with n as the number of moles, R as the constant 8.31 J/mole*K . How much work is done in an isothermal process of an ideal gas starting at a pressure of 2.10E2 kPa, and 0.0360 m3 volume as it expands to a volume of 0.165 m3? b.) If the...
An ideal diatomic gas contracts in an isobaric process from 1.15 m3 to 0.600 m3 at...
An ideal diatomic gas contracts in an isobaric process from 1.15 m3 to 0.600 m3 at a constant pressure of 1.70 ✕ 105 Pa. If the initial temperature is 445 K, find the work done on the gas, the change in internal energy, the energy transfer Q, and the final temperature. (a) the work done on the gas (in J) (b) the change in internal energy (in J) (c) the energy transfer Q (in J) (d) the final temperature (in...
In an Isothermal process the temperature stays thes same as the volume and pressure are allowed...
In an Isothermal process the temperature stays thes same as the volume and pressure are allowed to change. In such a proces the work is found by W=nRTln (VfVi), with n as the number of moles, R as the constant 8.31 J/mole*K . How much work is done in an isothermal process of an ideal gas starting at a pressure of 225 kPa, and 0.0370 m3 volume as it expands to a volume of 0.199 m3?     If the gas...
In class we discussed a reversible, isothermal compression of an ideal gas. The initial point (1)...
In class we discussed a reversible, isothermal compression of an ideal gas. The initial point (1) is an ideal gas in equilibrium at pressure 1 (P1), volume 1 (V1) and temperature (T), and the final point (2) is an ideal gas in equilibrium at pressure 2 (P2), volume 2 (V2) and temperature (T), where V2 d) For each differential step, the change in entropy is given by dS=qrev/T =!!!"#! . Since T is constant , this express ion can be...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT