Question

Two astronauts, one of mass 65 kg and the other 88 kg , are initially at...

Two astronauts, one of mass 65 kg and the other 88 kg , are initially at rest together in outer space. They then push each other apart.

How far apart are they when the lighter astronaut has moved 13 mm ?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You and your fellow astronaut are floating in space right next to each other initially at...
You and your fellow astronaut are floating in space right next to each other initially at rest. You have a mass of 68 kg and your friend has a mass of 87 kg. You get into an altercation and your friend pushes you. After the push you are traveling at 2.5 m/s in the +x direction. What is your fellow astronauts velocity after the push? Express your answer in meters per second and round to one decimal place.
Two astronauts (figure), each having a mass of 74.0 kg, are connected by a d =...
Two astronauts (figure), each having a mass of 74.0 kg, are connected by a d = 11.0-m rope of negligible mass. They are isolated in space, orbiting their center of mass at speeds of 5.30 m/s. Two astronauts are connected by a taut horizontal rope of length d. They rotate counterclockwise about the center of mass CM at the midpoint of the rope. (a) Treating the astronauts as particles, calculate the magnitude of the angular momentum of the two-astronaut system....
Two astronauts, each with a mass of 57 kg, are connected by a 6.4 m massless...
Two astronauts, each with a mass of 57 kg, are connected by a 6.4 m massless rope. Initially they are rotating around their center of mass with an angular velocity of 1.9 rad/s. One of the astronauts then pulls on the rope shortening the distance between the two astronauts to 2.6 m. What is angular speed (in rad/s) of the system at this new separation distance between the astronauts? You may model each astronaut as a point particle.
in space, two astronauts, each with a mass of 60 kg, are attached to each other...
in space, two astronauts, each with a mass of 60 kg, are attached to each other at the ends of a 30 m long rope. they are rotating abiut the CENTER of the rope, each traveling in the same circular path at a speed of V =3.50 m/s draw and label a figure A) find initial moment of inertia B) find the initial angular velocity the astronauts pull themselves along the rope until they are 2.20 m apart. C) now...
Two identical spherical asteroids (mass 3.07x1018 kg, radius 5.5x103 m) are initially at rest, with their...
Two identical spherical asteroids (mass 3.07x1018 kg, radius 5.5x103 m) are initially at rest, with their centers 6.01x105 m apart. Ignore all other objects in the universe, and friction. The two asteroids accelerate toward each other, due to gravity, until they finally crash together. At what speed, in m/s, will each asteroid be moving when they collide (just touch on their outer edge)? NOTE: when the asteroids collide, the distance between the centers of the asteroids is not zero!
Two identical spherical asteroids (mass 7.53x10^18 kg, radius 1.28x10^3 m) are initially at rest, with their...
Two identical spherical asteroids (mass 7.53x10^18 kg, radius 1.28x10^3 m) are initially at rest, with their centers 4.79x10^5 m apart. Ignore all other objects in the universe, and friction. The two asteroids accelerate toward each other, due to gravity, until they finally crash together. At what speed, in m/s, will each asteroid be moving when they collide (just touch on their outer edge)? NOTE: when the asteroids collide, the distance between the centers of the asteroids is not zero!
Two identical spherical asteroids (mass 3.89x10^18 kg, radius 6.94x10^3 m) are initially at rest, with their...
Two identical spherical asteroids (mass 3.89x10^18 kg, radius 6.94x10^3 m) are initially at rest, with their centers 3.85x10^5 m apart. Ignore all other objects in the universe, and friction. The two asteroids accelerate toward each other, due to gravity, until they finally crash together. At what speed, in m/s, will each asteroid be moving when they collide (just touch on their outer edge)? NOTE: when the asteroids collide, the distance between the centers of the asteroids is not zero!
Two astronauts are operating in a remote region of space. Their velocity and acceleration are both...
Two astronauts are operating in a remote region of space. Their velocity and acceleration are both zero. The 80.0-kg astronaut pushes on the 60.0-kg astronaut with a force of 30.0-N for 0.5 seconds. a. What is the momentum of the system before they push? b. What impulse did the 80.0-kg astronaut apply to the 60.0-kg astronaut? c. What is the velocity of the 60.0-kg astronaut after the push? See instruction C on page 1. d. What is the velocity of...
Two identical particles of charge 6 μμC and mass 3 μμg are initially at rest and...
Two identical particles of charge 6 μμC and mass 3 μμg are initially at rest and held 3 cm apart. How fast will the particles move when they are allowed to repel and separate to very large (essentially infinite) distance? Now suppose that the two particles have the same charges from the previous problem, but their masses are different. One particle has mass 3 μμg as before, but the other one is heavier, with a mass of 30 μμg. Their...
An experiment is performed in deep space with two uniform spheres, one with mass 20.0 kg...
An experiment is performed in deep space with two uniform spheres, one with mass 20.0 kg and the other with mass 108.0 kg . They have equal radii, r = 0.30 m . The spheres are released from rest with their centers a distance 40.0 m apart. They accelerate toward each other because of their mutual gravitational attraction. You can ignore all gravitational forces other than that between the two spheres. A. When their centers are a distance 28.0 m...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT