Question

**Steam with pressure 6 MPA and temperature 500 ⁰C expands
in an adiabatic turbine to saturated steam and a pressure of 0,3
MPA. Kinetic energy and potential energy is neglected. Determine
work produced, entropi generated and exergy destroyed for the
turbine. Assume surrounding to 0,1 MPa och 25 ⁰C.**

Answer #1

Please leave rating thank

Question 5 Steam enters an adiabatic turbine at 10 MPa and 500°C
and leaves at 10 kPa with a quality of 90 percent. Neglecting the
changes in kinetic and potential energies, determine the mass flow
rate required for a power output of 5 MW

Steam flows steadily through an adiabatic turbine. The inlet
conditions are: 20 MPa, 500°C, 90 m/s and the exit conditions are
20 kPa, 95% quality, and 60 m/s. The mass flow rate of the steam is
15 kg/s. Find:
a) The change in kinetic energy of the steam, (5 points)
b) The power output, and (5 points)
c) The turbine inlet area. (5 points)

Water vapor at 6 MPa, 500°C enters a turbine operating at steady
state and expands to 20 kPa. The mass flow rate is 3 kg/s, and the
power developed is 2626 kW. Stray heat transfer and kinetic and
potential energy effects are negligible. Determine: (a) the
isentropic turbine efficiency and (b) the rate of entropy
production within the turbine, in kW/K.

Steam enters an adiabatic turbine at 1 MPa and 400 °C and leaves
at 150 kPa with a quality of 80 percent. Neglecting the changes in
kinetic and potential energies, determine the mass flow rate
required for a power output of 10 MW

Steam enters an adiabatic turbine at 5 MPa and 700°C at a rate
of 18.6 kg/s. The steam leaves the turbine at 50 kPa and 200°C.
What is the rate of work produced by the turbine in MW? What is the
rate of change of entropy of the steam during this process in kW/K?
If the turbine is reversible and adiabatic and the steam leaves at
50 kPa, what is the rate of work produced by this turbine in MW?...

Steam at 4.5 MPa and 500 C enters the turbine with a velocity of
60 m/s and its mass flow rate is 5,000 kg/h. The steam leaves the
turbine at a point 3m below the turbine inlet with a velocity of
350 m/s. The heat loss from the turbine is 100,000 kJ/hr and the
shaft work produced is 950hp. A small portion of the exhaust steam
from the turbine is passed through a throttling valve and
discharges at atmospheric pressure....

Steam enters an adiabatic turbine at 5 Mpa 500 oC
with a mass flow rate of 2 kg/s and leaves at 100 kpa. The
isentropic efficiency of the turbine is 90%. Find (12
points)
(a) Actual work output of the turbine _______________ (7
points)
b) Maximum work output of the turbine_______________(3
points)
(c) Entropy change during this process
__________________________(2 points)

Steam at 6 MPA, 600°C, enters a well-insulated turbine operating
at steady state and exits at 0.1 bar. The isentropic efficiency of
the turbine is 94.7%. Assuming the kinetic and potential energy
effects to be negligible, determine:
(a) Work output, in kJ/kg,
(b) The temperature at the exit of the turbine, in °C, and
(c) The rate of entropy production within the turbine, in kJ/K
per kg of steam flowing through the turbine.
(All steps required – Given/Find/Schematic/Engineering
Model/Analysis)
THANK...

Steam enters an adiabatic turbine at 7 MPa, 700 °C and
80 m/s and leaves at 50 kPa, 150 °C, and 140 m/s. If the power
output of the turbine is 6 MW, determine:
i) Mass
flowrate of the steam flowing through the
turbine.
ii) The
isentropic efficiency of the turbine.

A steam turbine has inlet steam pressure p1 = 1.4 MPa
absolute. Inlet steam temperature is T1 = 400
oC. This corresponds to inlet enthalpy per unit mass of
h1 = 3121 kJ/kg. Exit pressure of the steam is p2 = 101
kPa absolute. Exit steam temperature is T2 = 100
oC. This corresponds to exit enthalpy per unit mass of
h2 = 2676 kJ/kg. Inlet speed of the steam is
V1 = 15 m/s and exit speed is V2...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 5 minutes ago

asked 59 minutes ago

asked 59 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago