Question

Steam with pressure 6 MPA and temperature 500 ⁰C expands in an adiabatic turbine to saturated...

Steam with pressure 6 MPA and temperature 500 ⁰C expands in an adiabatic turbine to saturated steam and a pressure of 0,3 MPA. Kinetic energy and potential energy is neglected. Determine work produced, entropi generated and exergy destroyed for the turbine. Assume surrounding to 0,1 MPa och 25 ⁰C.

Homework Answers

Answer #1


Please leave rating thank

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Question 5 Steam enters an adiabatic turbine at 10 MPa and 500°C and leaves at 10...
Question 5 Steam enters an adiabatic turbine at 10 MPa and 500°C and leaves at 10 kPa with a quality of 90 percent. Neglecting the changes in kinetic and potential energies, determine the mass flow rate required for a power output of 5 MW
Water vapor at 6 MPa, 500°C enters a turbine operating at steady state and expands to...
Water vapor at 6 MPa, 500°C enters a turbine operating at steady state and expands to 20 kPa. The mass flow rate is 3 kg/s, and the power developed is 2626 kW. Stray heat transfer and kinetic and potential energy effects are negligible. Determine: (a) the isentropic turbine efficiency and (b) the rate of entropy production within the turbine, in kW/K.
Steam flows steadily through an adiabatic turbine. The inlet conditions are: 20 MPa, 500°C, 90 m/s...
Steam flows steadily through an adiabatic turbine. The inlet conditions are: 20 MPa, 500°C, 90 m/s and the exit conditions are 20 kPa, 95% quality, and 60 m/s. The mass flow rate of the steam is 15 kg/s. Find: a) The change in kinetic energy of the steam, (5 points) b) The power output, and (5 points) c) The turbine inlet area. (5 points)
Steam enters an adiabatic turbine at 1 MPa and 400 °C and leaves at 150 kPa...
Steam enters an adiabatic turbine at 1 MPa and 400 °C and leaves at 150 kPa with a quality of 80 percent. Neglecting the changes in kinetic and potential energies, determine the mass flow rate required for a power output of 10 MW
Steam enters an adiabatic turbine at 5 MPa and 700°C at a rate of 18.6 kg/s....
Steam enters an adiabatic turbine at 5 MPa and 700°C at a rate of 18.6 kg/s. The steam leaves the turbine at 50 kPa and 200°C. What is the rate of work produced by the turbine in MW? What is the rate of change of entropy of the steam during this process in kW/K? If the turbine is reversible and adiabatic and the steam leaves at 50 kPa, what is the rate of work produced by this turbine in MW?...
Steam at 4.5 MPa and 500 C enters the turbine with a velocity of 60 m/s...
Steam at 4.5 MPa and 500 C enters the turbine with a velocity of 60 m/s and its mass flow rate is 5,000 kg/h. The steam leaves the turbine at a point 3m below the turbine inlet with a velocity of 350 m/s. The heat loss from the turbine is 100,000 kJ/hr and the shaft work produced is 950hp. A small portion of the exhaust steam from the turbine is passed through a throttling valve and discharges at atmospheric pressure....
Steam enters an adiabatic turbine at 5 Mpa 500 oC with a mass flow rate of...
Steam enters an adiabatic turbine at 5 Mpa 500 oC with a mass flow rate of 2 kg/s and leaves at 100 kpa. The isentropic efficiency of the turbine is 90%. Find (12 points) (a) Actual work output of the turbine _______________ (7 points) b) Maximum work output of the turbine_______________(3 points) (c) Entropy change during this process __________________________(2 points)
Steam at 6 MPA, 600°C, enters a well-insulated turbine operating at steady state and exits at...
Steam at 6 MPA, 600°C, enters a well-insulated turbine operating at steady state and exits at 0.1 bar. The isentropic efficiency of the turbine is 94.7%. Assuming the kinetic and potential energy effects to be negligible, determine: (a) Work output, in kJ/kg, (b) The temperature at the exit of the turbine, in °C, and (c) The rate of entropy production within the turbine, in kJ/K per kg of steam flowing through the turbine. (All steps required – Given/Find/Schematic/Engineering Model/Analysis) THANK...
Steam enters an adiabatic turbine at 5 MPa , 800 C and leaves at 50 kPa,...
Steam enters an adiabatic turbine at 5 MPa , 800 C and leaves at 50 kPa, 150 C. Determine the isentropic efficiency of the turbine 73% 10% 100% 96%
Steam enters an adiabatic turbine at 7 MPa, 700 °C and 80 m/s and leaves at...
Steam enters an adiabatic turbine at 7 MPa, 700 °C and 80 m/s and leaves at 50 kPa, 150 °C, and 140 m/s. If the power output of the turbine is 6 MW, determine: i)          Mass flowrate of the steam flowing through the turbine.                                      ii)        The isentropic efficiency of the turbine.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT