Question

Five point charges, all with q = 5.2 C, are spaced equally along a semicircle as...

Five point charges, all with q = 5.2 C, are spaced equally along a semicircle as shown in the figure below. If the semicircle has a radius of 2.5 m, what are the magnitude and direction of the electric field at the origin?  

Here is a link to the picture: https://s3.amazonaws.com/answer-board-image/9f27a27f-50ee-4cae-a4cb-6fda7ccce7ba.gif

_________N/C

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electric dipole is formed from two charges, ±q, spaced 0.600 cm apart. The dipole is...
An electric dipole is formed from two charges, ±q, spaced 0.600 cm apart. The dipole is at the origin, oriented along the y-axis. The electric field strength at the point (x,y)=(0cm,10cm) is 390 N/C What is the electric field strength at the point (x,y)=(10cm,0cm)?
Positive point charges q = 7.00 μC and q′= 2.00 μC are moving relative to an...
Positive point charges q = 7.00 μC and q′= 2.00 μC are moving relative to an observer at point P, as shown in the figure (Figure 1). The distance d is 0.130 m , v = 4.60×106 m/s , and v′= 9.20×106 m/s . When the two charges are at the locations shown in the figure, what is the magnitude of the net magnetic field they produce at point P? What is the direction of the net magnetic field at...
1. A point charge - and a conducting solid sphere of charge density +a(C/m?) and radius...
1. A point charge - and a conducting solid sphere of charge density +a(C/m?) and radius a are shown in Figure I (centers of both charges are al 2a distance from the origin o) a) Draw the electric field vectors at the origin 0. (4 pts) b) Determine the direction and magnitude of the NET electric field E, at origin O. (11 pts) +(C/m?) e) Calculate the NET electric potential V at the origin O(10 pts)
Two point charges of −Q and Q are fixed at x=−a and x=a on the x...
Two point charges of −Q and Q are fixed at x=−a and x=a on the x axis, respectively as shown in Figure 1. Another point charge of q and mass m is released at x=x0 at rest and it is free to move. Find a) the electric field vector, −→E (both magnitude and direction) at any x and b) the ultimate speed of particle of mass m.
Two equal charges of 3.00 x 10^-6 C lie along the x-axis: one is at the...
Two equal charges of 3.00 x 10^-6 C lie along the x-axis: one is at the origin, and the other is 2.0 m from the origin. Find the magnitude and direction of the electric field at a point on the y-axis 0.25 m from the origin.
C) An electric dipole is formed from two charges, ±q, spaced 1.30 cm apart. The dipole...
C) An electric dipole is formed from two charges, ±q, spaced 1.30 cm apart. The dipole is at the origin, oriented along the y-axis. The electric field strength at the point (x,y)=(0cm,10cm) is 330 N/C . - What is the charge q? Give your answer in nC. - What is the electric field strength at the point (x,y)=(10cm,0cm)? Express your answer with the appropriate units. D) A small glass bead charged to 4.5 nC is in the plane that bisects...
Two point charges are fixed in place along the x axis as shown in the figure...
Two point charges are fixed in place along the x axis as shown in the figure above. The charge Q1=-3 μμC is located at the origin. The charge Q2=4 μμC is a distance a = 0.46 m to the right of the origin. 1) Calculate the x component of the electric field at point P a distance h=0.32 m above the origin. Ex = -0.115 × 106 N/C Ex = -0.094 × 106 N/C Ex = 0.264 × 106 N/C...
Four point charges are at the corners of a square of side a as shown in...
Four point charges are at the corners of a square of side a as shown in the figure below. Determine the magnitude and direction of the resultant electric force on q, with ke, q, and a in symbolic form. (Let B = 4.0q and C = 2.0q. Assume that the +x-axis is to the right and the +y-axis is up along the page.)
Four point charges are at the corners of a square of side a as shown in...
Four point charges are at the corners of a square of side a as shown in the figure below. Determine the magnitude and direction of the resultant electric force on q, with ke, q, and a in symbolic form. (Let B = 4.0q and C = 5.5q. Assume that the +x-axis is to the right and the +y-axis is up along the page.)
Three point charges are aligned along the x axis as shown in the figure below. Three...
Three point charges are aligned along the x axis as shown in the figure below. Three point charges lie along the x-axis in the x y coordinate plane. A charge of −4.00 nC is 0.500 m to the left of the origin. A charge of 5.00 nC is at the origin. A charge of 3.00 nC is 0.800 m to the right of the origin. Find the electric field at the following positions. (a)    (3.00, 0) = (b)    (0, 3.00) =