Question

A steel ball of mass m1=3.0 kg is fastened to a cord that is L=1.4 m...

A steel ball of mass m1=3.0 kg is fastened to a cord that is L=1.4 m long and fixed at the far end. The ball is released when the cord is horizontal. At the bottom of its path, the ball strikes a m2=1.5 kg steel block initially at rest on a frictionless surface. The collision is elastic. Find the speed of the steel ball immediately before the collision (v-before) and the steel block immediately after the collision (v-after) in m/s. Select exactly 2 answers and be careful to select the appropriate ones.

Homework Answers

Answer #1

Let me know if you need any further clarification.
Please upvote if you have understood the solution. Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A steel ball of mass 0.260 kg is fastened to a cord that is 32.0 cm...
A steel ball of mass 0.260 kg is fastened to a cord that is 32.0 cm long and fixed at the far end. The ball is then released when the cord is horizontal, as shown in the figure. At the bottom of its path, the ball strikes a 3.60 kg steel block initially at rest on a frictionless surface. The collision is elastic. Find (a) the speed of the ball and (b) the speed of the block, both just after...
A ball is attached to one end of a wire, the other end being fastened to...
A ball is attached to one end of a wire, the other end being fastened to the ceiling. The wire is held horizontal, and the ball is released from rest (see the drawing). It swings downward and strikes a block initially at rest on a horizontal frictionless surface. Air resistance is negligible, and the collision is elastic. The masses of the ball and block are, respectively, 1.7 kg and 2.4 kg, and the length of the wire is 1.13 m....
Two blocks of masses m1 = 1.50 kg and m2 = 3.00 kg are each released...
Two blocks of masses m1 = 1.50 kg and m2 = 3.00 kg are each released from rest at a height of h = 4.40 m on a frictionless track, as shown in the figure below, and undergo an elastic head-on collision. (Let the positive direction point to the right. Indicate the direction with the sign of your answer.) (a) Determine the velocity of each block just before the collision. (b) Determine the velocity of each block immediately after the...
A ball with mass m1= 1kg is released from a height of 50 m while another...
A ball with mass m1= 1kg is released from a height of 50 m while another ball with mass m2=1.0 kg is launched vertically toward the first ball with v0= 25 m/s. Consider that their collision is perfectly elastic what is the velocity of the first ball immediately after collision? (Neglect friction.)
a ball with mass m1=1kg is released from a height of 50m while another ball with...
a ball with mass m1=1kg is released from a height of 50m while another ball with mass m2=1.0kg is launched vertically towards the first ball with v=25m/s consider that their collision is perfectly elastic. What is the velocity of the first ball immediately after collision (neglect friction) A. -5.4m/s B. 5.4m/s C. -19.6 m/s D. 19.6 m/s
A 200 g rubber ball is attached to a 1.0 m long string and released from...
A 200 g rubber ball is attached to a 1.0 m long string and released from an angle (theta). It swings down and at the very bottom has a perfectly elastic collision with a 1.0 kg block. The block is resting on a frictionless surface and is connected to a 20 cm long spring with spring constant 2000 N/m. After the collision, the spring compresses a maximum distance of 3.0 cm. From what angle was the ball released?
A sphere of radius 10 m and a mass m1 = 5 kg is rolling without...
A sphere of radius 10 m and a mass m1 = 5 kg is rolling without slipping on a horizotal surface with a velocity V = 20 m/s to the East. It collides with a stationery sphere of mass m2 =15 kg. After the collision both masses rolls in different directions and m1 with a velocity V = 5 m/s. 1) Find the velocity of m2 after collision 2) Find the angular velocity of m2 after the collision 3) Was...
   A ball of mass m1=0.250 kg and velocity v1=5.00 m/s [E] collides head-on with a...
   A ball of mass m1=0.250 kg and velocity v1=5.00 m/s [E] collides head-on with a ball of mass m2=0.800 kg that is initially at rest. No external forces act on the balls. a. Show what is conserved through the appropriate formula if the collision is elastic. b. What are the velocities of the balls after the collision?
A block of mass m=1.4 kg, moving on frictionless surface with a speed v1i=5.3 m/s, makes...
A block of mass m=1.4 kg, moving on frictionless surface with a speed v1i=5.3 m/s, makes a perfectly elastic collision with a block of mass M at rest, see the sketch. After the collision, the 1.4 kg block recoils with a speed of v1f=0.3 m/s. What is the speed of block M after the collision? A. v2f=4.8 m/s B. v2f=5.2 m/s C. v2f=3.4 m/s D. v2f=5.0 m/s
Two blocks of masses m1 = 2.00 kg and m2 = 4.00 kg are released from...
Two blocks of masses m1 = 2.00 kg and m2 = 4.00 kg are released from rest at a height of h = 5.00 m on a frictionless track as shown to the right. When they meet on the level portion of the track, they undergo a head-on, elastic collision. Determine the maximum heights to which m1 and m2 rise on the curved portion of the track after the collision. h1 =  m h2 =  m