Question

What is the potential energy of interaction between electron and proton in hydrogen atom, where separation...

What is the potential energy of interaction between electron and proton in hydrogen atom, where separation between two is 0.259*10-10m. Express your answer in eV. 1eV=1.6*10-19J (keep 3 significant figures)

Homework Answers

Answer #1

hit like if answer is right and let me know if you have any question...thanks..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Take the potential energy of a hydrogen atom to be zero for infinite separation of the...
Take the potential energy of a hydrogen atom to be zero for infinite separation of the electron and proton. Then the ground state energy of a hydrogen atom is –13.6 eV. The energy of the first excited state is: A) 0eV B) –3.4 eV C) –6.8 eV D) –10.2 eV E) –27 eV
what is angular velocity of a single electron orbiting a single proton in a hydrogen atom....
what is angular velocity of a single electron orbiting a single proton in a hydrogen atom. The orbit is circular and the proton is not moving. centripetal force is supplied by the coulomb force. radius = 0.530×10^-10m
The hydrogen atom consists of one electron orbiting one proton in a circular orbit. (a) Using...
The hydrogen atom consists of one electron orbiting one proton in a circular orbit. (a) Using Coulomb's Law and concepts of centripetal acceleration/force, show that the radius r of the orbit is given by where K is the kinetic energy of the electron, k is the Coulomb's Law constant, +e is the charge of the proton, and -e is the charge of the electron. (b) Calculate r when the kinetic energy of the electron is 13.6 eV. (c) What percentage...
Calculate the binding energy E of the helium nucleus 42He (1eV=1.602×10−19J). Express your answer in millions...
Calculate the binding energy E of the helium nucleus 42He (1eV=1.602×10−19J). Express your answer in millions of electron volts to four significant figures.
Consider a hydrogen atom: a single electron that orbit the proton, the electron circular orbit has...
Consider a hydrogen atom: a single electron that orbit the proton, the electron circular orbit has radius Bohr ground state .529 angstrom. a. Calculate the magnitude of the Coulomb's force between the proton and electron b. Write this force in vector form. c. Calculate the velocity and acceleration of the electron. d. Calculate the electron's electric potential energy in electron volt.
A. Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes...
A. Determine the wavelength of the light absorbed when an electron in a hydrogen atom makes a transition from an orbital in which n=2 to an orbital in which n=7. Express the wavelength in nanometers to three significant figures. B. An electron in the n=6 level of the hydrogen atom relaxes to a lower energy level, emitting light of λ=93.8nm. Find the principal level to which the electron relaxed. Express your answer as an integer. Can you explain it in...
Consider the Bohr model of the hydrogen atom for which an electron in the ground state...
Consider the Bohr model of the hydrogen atom for which an electron in the ground state executes uniform circular motion about a stationary proton at radius a0. (a) Find an expression for the kinetic energy of the electron in the ground state. (b) Find an expression for the potential energy of the electron in the ground state. (c) Find an expression for the ionization energy of an electron from the ground state of the hydrogen atom. The ionization energy is...
A Hydrogen atom has one proton in the nucleus and one electron in the shell. In...
A Hydrogen atom has one proton in the nucleus and one electron in the shell. In a classic model of the atom, in a certain state, this electron is in a circular orbit around the nucleus with an angular momentum of 9.495e-34 Js. What is the radius of the orbit? 4.30×10-9m    What is the speed of the electron at this radius? What is the kinetic energy of the electron at this radius? What is the kinetic energy in electron-volts?
A proton has an initial speed of 4.4×10^5 m/s . A) What potential difference is required...
A proton has an initial speed of 4.4×10^5 m/s . A) What potential difference is required to bring the proton to rest? Express your answer using two significant figures. B) What potential difference is required to reduce the initial speed of the proton by a factor of 2? Express your answer using two significant figures. C) What potential difference is required to reduce the initial kinetic energy of the proton by a factor of 2? Express your answer using two...
-Calculate the magnitude of the maximum orbital angular momentum Lmax for an electron in a hydrogen...
-Calculate the magnitude of the maximum orbital angular momentum Lmax for an electron in a hydrogen atom for states with a principal quantum number of 8. Express your answer in units of ℏ to three significant figures. -Calculate the magnitude of the maximum orbital angular momentum Lmax for an electron in a hydrogen atom for states with a principal quantum number of 48. Express your answer in units of ℏ to three significant figures. -Calculate the magnitude of the maximum...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT