Question

In an atom, an electron is jumping from state with an energy of –(2.51) eV to...

In an atom, an electron is jumping from state with an energy of –(2.51) eV to a state with an energy of –(5.32) eV. Find the wavelength of the emitted photon.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Light is emitted from a hydrogen atom as an electron in the atom jump from the...
Light is emitted from a hydrogen atom as an electron in the atom jump from the n=9 orbit to the n=3 orbit. What is the energy of the emitted photon in eV? (b) What are the frequency and wavelength of the photon? (c) In which frequency range (UV, visible, IR) is the emitted electromagnetic radiation? Justify your answer.
(1) Part A: If a electron in a hydrogen atom makes a transition from ground state...
(1) Part A: If a electron in a hydrogen atom makes a transition from ground state to n = 8 level what wavelength of light in (nm) would be needed for the abosorbed photon to cause the transition? Part B: If the same electron falls to a lower level by emmitting a photon of light in the Paschen series what is the frequncy of light in (Hz) thats emitted? (2) When a photon have a wavelength of 195nm strikes the...
A hydrogen atom transitions from the n = 6 excited state to the n = 3...
A hydrogen atom transitions from the n = 6 excited state to the n = 3 excited state, emitting a photon. a) What is the energy, in electron volts, of the electron in the n = 6 state? How far from the nucleus is the electron? b) What is the energy, in electron volts, of the photon emitted by the hydrogen atom? What is the wavelength of this photon? c) How many different possible photons could the n = 6...
a. what is the energy of the emitted photon if an electron in the hydrogen atom...
a. what is the energy of the emitted photon if an electron in the hydrogen atom makes a transition from the n=7 state to the n=2 state? b. Now, Imagine there is a photon with the same wavelength. What is the speed of this photon?
4. [15] Light is emitted from a hydrogen atom as an electron in the atom jump...
4. [15] Light is emitted from a hydrogen atom as an electron in the atom jump from the n=9 orbit to the n=3 orbit. (a) [7] What is the energy of the emitted photon in eV? (b) [4] What are the frequency and wavelength of the photon? (c) [4] In which frequency range (UV, visible, IR) is the emitted electromagnetic radiation? Justify your answer.
I just need the math for these. I can't figure them out. 41. An electron in...
I just need the math for these. I can't figure them out. 41. An electron in the hydrogen atom makes a transition from an energy level of –1.51 eV to one of energy –3.40 eV. In this process a photon is emitted with what wavelength? Ans: 656 nm     42. An electron in the hydrogen atom (ground-state energy = –13.6 eV) makes a transition from the n = 3 to the n = 1 energy level. Calculate the magnitude of the...
a) Originally, a H-atom is an n=5 state. The (total) energy of an electron in this...
a) Originally, a H-atom is an n=5 state. The (total) energy of an electron in this state is En = _______ eV. b) After this atom absorbs a 66-nm photon, the electron is ejected. The energy of the absorbed photon is Ey = _______eV. c) The kinetic energy of the ejected electron is K = _________eV
The electron in a hydrogen atom falls from an excited energy level to the ground state...
The electron in a hydrogen atom falls from an excited energy level to the ground state in two steps, causing the emission of photons with wavelengths of 656.5 nm and 121.6 nm (So the in the first step the 656.5 nm photon is emitted and in the second step the 121.6 nm photon is emitted). What is the principal quantum number (ni) of the initial excited energy level from which the electron falls?
An electron in a hydrogen atom makes a transition from the n = 68 to the...
An electron in a hydrogen atom makes a transition from the n = 68 to the n = 4 energy state. Determine the wavelength of the emitted photon (in nm).
A hydrogen atom in the ground state absorbs a 12.75 eV photon. Immediately after the absorption,...
A hydrogen atom in the ground state absorbs a 12.75 eV photon. Immediately after the absorption, the atom undergoes a quantum jump to the next-lowest energy level. What is the wavelength of the photon emitted in this quantum jump? Express your answer using four significant figures. I've seen this question before, but I'm looking the wavelength, not the energy, or n. Thanks!
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT