Question

Torques and Angular Momentum 1. A 250 kg playground merry-go-round has a radius of 2.0m and...

Torques and Angular Momentum

1. A 250 kg playground merry-go-round has a radius of 2.0m and can be approximated as a disk.

A.Find the moment of inertia of the merry-go-round.

B.A 30.0 kg child applies 20 N tangential force for 10 seconds and then jumps on the edge while moving at the same speed as the merry-go-round. Find the angular speed of the merry-go-round and the child.

C.How much work did the child do on the merry-go-round?

D.How much average power did the child apply to the merry-go-round?

E.Treat the child as a point mass on the merry-go-round and find the total moment of inertia of child and merry-go-round.

F.The child walks to a point B, 1.0 meter from the center thereby changing the moment of inertia of the system. Find the new angular speed.

G.How much work did the child do to walk toward the center to point B?

Homework Answers

Answer #1

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A playground merry-go-round has a radius R and a rotational inertia I. When the merry-go-round is...
A playground merry-go-round has a radius R and a rotational inertia I. When the merry-go-round is at rest, a child with mass m runs with speed v along a line tangent to the rim and jumps on. The angular velocity of the merry-go-round is then
A playground merry-go-round has a moment of inertia of 600 kg m2. When the merry-go-round is...
A playground merry-go-round has a moment of inertia of 600 kg m2. When the merry-go-round is at rest, a 20 kg boy runs at 5.9 m/s along a line tangential to the rim and jumps on, landing on the rim a distance of 3.0 m from the rotation axis of the merry-go-round. The angular velocity of the merry-go-round is then: A.1.2 rad/s B.0.38 rad/s C.0.45 rad/s D.0.56 rad/s E.0.72 rad/s
A playground merry-go-round has radius 2.40m and moment of inertia 2100kg?m2 about a vertical axle through...
A playground merry-go-round has radius 2.40m and moment of inertia 2100kg?m2 about a vertical axle through its center, and it turns with negligible friction. A child applies an 22.5N force tangentially to the edge of the merry-go-round for 19.0s . If the merry-go-round is initially at rest, what is its angular speed after this 19.0s interval? How much work did the child do on the merry-go-round? What is the average power supplied by the child?
A child of mass 60 kg sits at the center of a playground merry-go-round which is...
A child of mass 60 kg sits at the center of a playground merry-go-round which is spinning at 1.5 rad/s. The moment of inertia and radius of the merry-go-round are 150 kg×m2 and 1.2 m respectively. How much rotational kinetic energy does the system lose as the child moves to the edge of the merry-go-round? (Treat the child as a point mass.)
On a playground, a merry-go-round with a total mass of 100 kg and a radius of...
On a playground, a merry-go-round with a total mass of 100 kg and a radius of 2.5mis rotating counterclockwise around its center with an angular speed of 0.5 rad/s. A girl with a mass of 40 kgruns at a speed of 4 m/s towards the edge of the merry-go-round and jumps on, as shown. What is the angularvelocity (magnitude and direction) of the merry-go-round after the girl lands on it? Assume the merry-go-roundis a uniform disk and treat the girl...
A playground merry-go-round (of mass 123 kg and radius 1.90 m) is rotating with an angular...
A playground merry-go-round (of mass 123 kg and radius 1.90 m) is rotating with an angular velocity of 4.42 rad/s. A 23.7 kg child, initially at rest, suddenly jumps on the merry-go-round by grabbing onto its outer edge. How much kinetic energy (in J) is lost in this inelastic collision?
A playground merry-go-round of radius 1.9 m has a moment of inertia 139 kg.m2 and is...
A playground merry-go-round of radius 1.9 m has a moment of inertia 139 kg.m2 and is rotating at 9 rev/min about a frictionless vertical axle. Facing the axle, a 27 kg child hops onto the merry-go-round, and manages to sit down on the edge. What is the new angular speed of the merry-go-round?
A playground merry-go-round of radius R = 1.60 m has a moment of inertia I =...
A playground merry-go-round of radius R = 1.60 m has a moment of inertia I = 255 kg·m2 and is rotating at 11.0 rev/min about a frictionless vertical axle. Facing the axle, a 25.0 kg child hops onto the merry-go-round and manages to sit down on its edge. What is the new angular speed of the merry-go-round?​
A playground merry-go-round of radius ? = 2.0 m has a moment of inertia ? =...
A playground merry-go-round of radius ? = 2.0 m has a moment of inertia ? = 250 kg ⋅ m^2 is rotating at 15 rpm about a frictionless, vertical axle. Facing the axle, a 25-kg child hops onto the merry-goround and manages to sit down on the edge. (a) (10 pts) What is the total angular momentum of the ‘merry-go-round-child’ system before and after the child hops on the the merry-go-round? (b) (10 pts) What is the new angular speed,...
A playground merry-go-round of radius R = 2.6 m has a moment of inertia of I...
A playground merry-go-round of radius R = 2.6 m has a moment of inertia of I = 200 kg*m^2. and is rotating at a rate of ω = 11 rev/min around a frictionless vertical axis. Facing the axle, a 39 kg child hops onto the merry-go-round and manages to sit down on the edge. What is the new angular speed of the merry-go-round (in rev/min)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT