Question

for y(t) function ty'' - ty' + ty = 0, y(0)= 0 , y'(0)= 1 solve...

for y(t) function ty'' - ty' + ty = 0, y(0)= 0 , y'(0)= 1

solve this initial value problem by using Laplace Transform.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
y′′(t) +ty′(t)−2y(t) = 2, y(0) = 0,y′(0) = 0 . This is a non-homogeneous linear second-order...
y′′(t) +ty′(t)−2y(t) = 2, y(0) = 0,y′(0) = 0 . This is a non-homogeneous linear second-order differential equation withnon-constantcoefficients andnotof Euler type. (a) Write the Laplace transform of the Initial Value Problem above. (b) Find a closed formula for the Laplace transformL(y(t)). (c) Find the unique solutiony(t) to the Initial Value Problem
Take the Laplace transform of the following initial value problem and solve for Y(s)=L{y(t)}: y′′−2y′−35y=S(t)y(0)=0,y′(0)=0 where...
Take the Laplace transform of the following initial value problem and solve for Y(s)=L{y(t)}: y′′−2y′−35y=S(t)y(0)=0,y′(0)=0 where S is a periodic function defined by S(t)={1,0≤t<1 0, 1≤t<2, and S(t+2)=S(t) for all t≥0. Hint: : Use the formula for the Laplace transform of a periodic function. Y(s)=
use Laplace Transform to show that y=t is the solution to the IVP y''+ty'-y=0, y(0)=0,y'(o)=1
use Laplace Transform to show that y=t is the solution to the IVP y''+ty'-y=0, y(0)=0,y'(o)=1
Consider the following initial value problem: y′′+49y={2t,0≤t≤7 14, t>7 y(0)=0,y′(0)=0 Using Y for the Laplace transform...
Consider the following initial value problem: y′′+49y={2t,0≤t≤7 14, t>7 y(0)=0,y′(0)=0 Using Y for the Laplace transform of y(t), i.e., Y=L{y(t)}, find the equation you get by taking the Laplace transform of the differential equation and solve for Y(s)=
Use the laplace transform to solve for the initial value problem: y''+6y'+25y=delta(t-7) y(0)=0 y'(0)=0
Use the laplace transform to solve for the initial value problem: y''+6y'+25y=delta(t-7) y(0)=0 y'(0)=0
solve the initial value problem y''+ty'+y=sint y(0)=1 y’(0)=-1
solve the initial value problem y''+ty'+y=sint y(0)=1 y’(0)=-1
use the laplace transform to solve initial value problem y"+4y'+20y=delta(t-2) y(0)=0, y'(0)=0 use step t-c for...
use the laplace transform to solve initial value problem y"+4y'+20y=delta(t-2) y(0)=0, y'(0)=0 use step t-c for uc(t)
Use the Laplace transform to solve the following initial value problem: y′′−4y′−32y=δ(t−6)y(0)=0,y′(0)=0
Use the Laplace transform to solve the following initial value problem: y′′−4y′−32y=δ(t−6)y(0)=0,y′(0)=0
Use the Laplace transform to solve following initial value problem.... ?″+6?′+58?=?(?−3) ?(0)=0, ?′(0)=0 y(t) = ?...
Use the Laplace transform to solve following initial value problem.... ?″+6?′+58?=?(?−3) ?(0)=0, ?′(0)=0 y(t) = ? (Notation: write u(t-c) for the Heaviside step function ??(?)uc(t) with step at ?=?t=c.)
Solve the initial value problem using Laplace transform theory.                   y”-2y’+10y=24t,   y(0)=0,   y'(0)= -1
Solve the initial value problem using Laplace transform theory.                   y”-2y’+10y=24t,   y(0)=0,   y'(0)= -1