Question

A 2.16-kg object on a frictionless horizontal track is attached to the end of a horizontal...

A 2.16-kg object on a frictionless horizontal track is attached to the end of a horizontal spring whose force constant is 5.00 N/m. The object is displaced 2.82 m to the right from its equilibrium position and then released, initiating simple harmonic motion.

A) What is the force (magnitude and direction) acting on the object 3.50 s after it is released?

B) How many times does the object oscillate in 3.50 s? (Do not round your answer to an integer.)

Homework Answers

Answer #1

please give a thumbs up

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
One end of a spring with a force constant of k = 10.0 N/m is attached...
One end of a spring with a force constant of k = 10.0 N/m is attached to the end of a long horizontal frictionless track and the other end is attached to a mass m = 2.20 kg which glides along the track. After you establish the equilibrium position of the mass-spring system, you move the mass in the negative direction (to the left), compressing the spring 2.03 m. You then release the mass from rest and start your stopwatch,...
If a 1 kg object on a horizontal, frictionless surface is attached to a spring, displaced,...
If a 1 kg object on a horizontal, frictionless surface is attached to a spring, displaced, and then released, it will oscillate. If it is displaced 0.120 m from its equilibrium position and released with zero initial speed. After 0.8 s its displacement is found to be 0.120 m on the opposite side, and it has passed the equilibrium position once during this interval. Find the amplitude, the period, the frequency, the angular frequency and the spring constant.
A 4.70-kg object on a frictionless horizontal surface is attached to one end of a horizontal...
A 4.70-kg object on a frictionless horizontal surface is attached to one end of a horizontal spring that has a force constant k = 570 N/m. The spring is stretched 9.30 cm from equilibrium and released. (a) What is the frequency of the motion? _____Hz (b) What is the period of the motion? ______s (c) What is the amplitude of the motion? ______cm (d) What is the maximum speed of the motion? ______m/s (e) What is the maximum acceleration of...
A 3.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 3.30-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 21.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. (a) Find the force constant of the spring. N/m (b) Find the frequency of the oscillations. Hz (c)...
A block is attached to a horizontal spring with a spring constant of 5.0 kg s?...
A block is attached to a horizontal spring with a spring constant of 5.0 kg s? 2. The block is displaced 0.5m from equilibrium and released (see the figure below). The block executes simple harmonic motion with a period of 4.0 s .Assuming that the block is moving on a frictionless surface, and the spring is of negligible mass. a. Calculate the mass of the block? b. Determine the velocity of the block 1.0 seconds after it is released? The...
A 30.0 kg block at rest on a horizontal frictionless air track is connected to the...
A 30.0 kg block at rest on a horizontal frictionless air track is connected to the wall via a spring. The equilibrium position of the mass is defined to be at x=0. Somebody pushes the mass to the position x= 0.350 m, then lets go. The mass undergoes simple harmonic motion with a period of 4.70 s. What is the position of the mass 3.713 s after the mass is released? Consider the same mass and spring discussed in the...
A 1.50-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal...
A 1.50-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 28.0 N is required to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. a.)Find the force constant of the spring. b.)Find the frequency of the oscillations. c.)Find the maximum speed of...
A 0.019 kg block on a horizontal frictionless surface is attached to a string whose spring/force/elastic...
A 0.019 kg block on a horizontal frictionless surface is attached to a string whose spring/force/elastic constant k is 120 N/m. The block is pulled from its equilibrium position at x=0 m to a displacement x=+0.080 m and is released from rest. The block then executes simple harmonic motion along x-axis (horizontal). When the displacement is x=0.051 m, what is the kinetic energy of the block in J?
A glider on a horizontal frictionless track is attached to an ideal massless spring that is...
A glider on a horizontal frictionless track is attached to an ideal massless spring that is fixed to a wall. At a point in the glider's simple harmonic motion, 0.750m from the equilibrium position of the system, the glider is moving to the right at 3.00m/s, is accelerating to the left at 1.00m/s2 , and has 18.0J of kinetic energy. Find the glider's maximum velocity.
A 0.55 kg block rests on a frictionless horizontal countertop, where it is attached to a...
A 0.55 kg block rests on a frictionless horizontal countertop, where it is attached to a massless spring whose k-value equals 23.0 N/m. Let x be the displacement, where x = 0 is the equilibrium position and x > 0 when the spring is stretched. The block is pushed, and the spring compressed, until xi = −4.00 cm. It then is released from rest and undergoes simple harmonic motion. (a) What is the block's maximum speed (in m/s) after it...