Question

An object is initially at rest at the origin at time t=0, when a force in...

An object is initially at rest at the origin at time t=0, when a force in Newtons acts on the object in 1 dimension along the x axis of F(t)=25.0t2-2.0t3 where t is time in seconds. What is the momentum of the object at time t = 12.5 seconds?

Homework Answers

Answer #1

We can solve this problem by using newton's 2nd law of motion. That is by this law we can write

F = dP/dt .

Force = derivative of momentum .

But in this question we have to find out the momentum from force. So to find this , just take the integral of force with respect to time. In the limit of 0 to 12.5 Sec. The detailed explanation is shown below in an image.

so momentum P= 4069.01 kgm/s.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At t=0 a body of unit mass initially at rest at the origin begins to move...
At t=0 a body of unit mass initially at rest at the origin begins to move along the x-axis under the influence of a force ? = 1/√(1 + ?^3), Find the velocity of the body at intervals of 0.2 from t=0 to t=2. Use Simpson Rule (1/3). Note: Newton second law, F = m . a , where F: force , m: mass and a : acceleration
At time t = 0, force F→1=(-5.99î+8.78ĵ)N acts on an initially stationary particle of mass 1.80...
At time t = 0, force F→1=(-5.99î+8.78ĵ)N acts on an initially stationary particle of mass 1.80 × 10-3 kg and force F→2=(2.86î-3.46ĵ)N acts on an initially stationary particle of mass 3.68 × 10-3 kg. From time t = 0 to t = 2.97 ms, what are the (a) magnitude and (b) angle (relative to the positive direction of the x axis) of the displacement of the center of mass of the two-particle system? (c) What is the kinetic energy of...
A 0.17 kg puck is initially stationary on an ice surface with negligible friction. At time...
A 0.17 kg puck is initially stationary on an ice surface with negligible friction. At time t = 0, a horizontal force begins to move the puck. The force is given by F → = ( 17.3 - 2.67 t 2 ) i ̂ , with F → in newtons and t in seconds, and it acts until its magnitude is zero. (a) What is the magnitude of the impulse on the puck from the force between t = 0.464...
A 5.97-kg object passes through the origin at time t = 0 such that its x...
A 5.97-kg object passes through the origin at time t = 0 such that its x component of velocity is 5.40 m/s and its y component of velocity is -3.24 m/s. (a) What is the kinetic energy of the object at this time?   (b) At a later time t = 2.00 s, the particle is located at x = 8.50 m and y = 5.00 m. What constant force acted on the object during this time interval? magnitude direction °...
A 6.32-kg object passes through the origin at time t = 0 such that its x...
A 6.32-kg object passes through the origin at time t = 0 such that its x component of velocity is 4.85 m/s and its ycomponent of velocity is -3.12 m/s. (a) What is the kinetic energy of the object at this time? J (b) At a later time t = 2.00 s, the particle is located at x = 8.50 m and y = 5.00 m. What constant force acted on the object during this time interval? magnitude N direction...
A 5.32-kg object passes through the origin at time t = 0 such that its x...
A 5.32-kg object passes through the origin at time t = 0 such that its x component of velocity is 5.40 m/s and its y component of velocity is −2.94 m/s. (a) What is the kinetic energy of the object at this time?   J (b) At a later time t = 2.00 s, the particle is located at x = 8.50 m and y = 5.00 m. What constant force acted on the object during this time interval? magnitude       N...
Object A, which has been charged to + 14 nC , is at the origin. Object...
Object A, which has been charged to + 14 nC , is at the origin. Object B, which has been charged to − 30 nC , is at (x,y)=(0.0cm,2.0cm). Part A: What is the magnitude of the electric force on object A? Express your answer in newtons. F = Part B: What is the magnitude of the electric force on object B? Express your answer in newtons. F = Part C: What is the direction of the electric force on...
A force F1 of magnitude 5.50 units acts on an object at the origin in a...
A force F1 of magnitude 5.50 units acts on an object at the origin in a direction θ = 54.0° above the positive x-axis. (See the figure below.) A second force F2 of magnitude 5.00 units acts on the object in the direction of the positive y-axis. Find graphically the magnitude and direction of the resultant force F1 + F2.
A 6.22-kg object passes through the origin at time t = 0 such that its x...
A 6.22-kg object passes through the origin at time t = 0 such that its x component of velocity is 5.10 m/s and its ycomponent of velocity is -3.27 m/s. (a) What is the kinetic energy of the object at this time? J (b) At a later time t = 2.00 s, the particle is located at x = 8.50 m and y = 5.00 m. What constant force acted on the object during this time interval? magnitude N direction
Object A (3 kg) and Object B (1 kg) are initially at rest. A constant force...
Object A (3 kg) and Object B (1 kg) are initially at rest. A constant force of 2 N is applied to the two objects in the following ways: Scenario 1: The force accelerates both objects over the same distance, d = 2 m. Scenario 2: The force accelerates both objects for the same length of time, Δt = 2 s. Note that the force is applied in the same direction for both objects. After the acceleration, how do the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT