Question

A ball of mass of 10 kg is attached to one end of a string. The...

A ball of mass of 10 kg is attached to one end of a string. The other end of the string is attached to the ceiling. The ball swings and undergoes 5 full oscillations in 18.00 seconds.
(a) Calculate the length of the string.
_____ m
(b) If the amplitude of motion of the pendulum is 15, calculate the total energy of the oscillator.
_____ J

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A simple pendulum was built using a ball attached to a light string. The mass of...
A simple pendulum was built using a ball attached to a light string. The mass of the ball is 0.38 kg and the length of the string is 1.0 m. If the amplitude of the pendulum is 10.5°, what is the maximum kinetic energy? Group of answer choices
A ball with a mass of 1.50 kg is attached to the end of a string...
A ball with a mass of 1.50 kg is attached to the end of a string that is 0.400 m in length. You swing the ball so that it swings in a vertical circle, traveling at a speed of 4.80 m/s at the top of the circle. (a) Draw the free-body diagram of the ball. Make sure you label all your vectors and clearly indicate their direction. (b) What is the tension in the string when the ball is at...
A 0.37 kg ball is attached to a 0.71 m long string. The other end of...
A 0.37 kg ball is attached to a 0.71 m long string. The other end of the string is then attached to the ceiling in order to create a pendulum. It is then drawn back such that the string makes an angle of 50 degrees relative to the ceiling and then released from rest. How fast is the pendulum traveling when the string makes an angle of 20 degrees relative to the vertical
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
A small mass is hung at the end of a light string of length 1.5 m...
A small mass is hung at the end of a light string of length 1.5 m and allowed to swing over a small amplitude as a simple pendulum. It is observed that the amplitude of swing is reduced to half its initial value in 30 complete swings. It may be assumed that the reduction of amplitude is due entirely to resistance of the air and this in turn may be assumed to be proportional to the velocity of the mass....
A 0.70-kg lump of metal is attached to a string of negligible mass. The other end...
A 0.70-kg lump of metal is attached to a string of negligible mass. The other end of the string is held in place. The lump of metal is released from rest when the string is 5 degrees from vertical. It is observed that the string is vertical after 0.18 seconds. Determine the period of the oscillations. Determine the angular frequency of the oscillations. Determine the length of the string. What happens to the period of oscillation if the mass of...
A ball is attached to one end of a wire, the other end being fastened to...
A ball is attached to one end of a wire, the other end being fastened to the ceiling. The wire is held horizontal, and the ball is released from rest (see the drawing). It swings downward and strikes a block initially at rest on a horizontal frictionless surface. Air resistance is negligible, and the collision is elastic. The masses of the ball and block are, respectively, 1.7 kg and 2.4 kg, and the length of the wire is 1.13 m....
A pendulum, with 1 kg mass attached with string of length 1 m is raised to...
A pendulum, with 1 kg mass attached with string of length 1 m is raised to an angle of 30 degrees below the horizontal and then released. Neglect frictional forces. 1. What is the height, h, initially of the pendulum bob? 2. What is the Potential Energy initially? What is the total Energy of the system? 3. What is the velocity of the pendulum when it reaches the bottom of its swing (i.e at 90° from horizontal as also shown...
A 6.5-kg mass is attached to an ideal 750-N/m spring. If the system undergoes simple harmonic...
A 6.5-kg mass is attached to an ideal 750-N/m spring. If the system undergoes simple harmonic motion, what are the frequency, angular frequency, and period of the motion? The frequency, f = The angular frequency, ω = The period, T =   If the total mechanical energy of the system is 72 J, what are the amplitude, maximum speed and maximum acceleration of the motion? The amplitude, A =   The maximum speed, vmax = The maximum acceleration, amax =
A small wooden sphere of density .7 g/cm^3 is attached to the end of a string...
A small wooden sphere of density .7 g/cm^3 is attached to the end of a string of length 2.0 m in a large tank of water. The other end of the string is attached to the bottom of the tank, forming a reverse pendulum. The tank is in a train moving along a circular path of radius 200 m at a constant speed of 30 m/s. Ignore water friction. The period of small oscillations of the pendulum is closest to:...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT