Question

A person makes a quantity of iced tea by mixing 500 g of hot tea (essentially...

A person makes a quantity of iced tea by mixing 500 g of hot tea (essentially water) with an equal mass of ice at its melting point. If the initial hot tea is at a temperature of (a) 96 C and (b) 66 C, what is the temperature and mass of the remaining ice when the tea and ice reach the same temperature? (Specific heat of water = 4.19 J/g-deg, latent heat of fusion of ice = 333 J/g.)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Your hot chocolate is served at 90 deg Celsius, too hot to drink. How much ice...
Your hot chocolate is served at 90 deg Celsius, too hot to drink. How much ice should you add to bring it to a more reasonable temperature of 30 degrees C? The specific heat of milk is 4 J/g/deg C, the specific heat of water is 4.19 J/g/deg C, and the latent heat of fusion of ice is 334 J/g.
Tina is going to make iced tea by first brewing hot tea, then adding ice until...
Tina is going to make iced tea by first brewing hot tea, then adding ice until the tea cools. Ice, at a temperature of −10.0°C, should be added to a 3.70 × 10−4 m3 glass of tea at 95.0°C to cool the tea to 10.0°C. The glass has a mass of 0.350 kg and the specific heat of the glass is 0.837 kJ/(kg·K). Specific heat capacity (15.0°C) of water is 4.186 kJ/(kg·K) and heat of fusion of water is 333.7...
Hot tea (water) of mass 0.21 kg and temperature 62 ∘C is contained in a glass...
Hot tea (water) of mass 0.21 kg and temperature 62 ∘C is contained in a glass of mass 200 g that is initially at the same temperature. You cool the tea by dropping in ice cubes out of the freezer that are at a temperature of – 11 ∘C. What is the minimum amount of ice in you need to make ice tea (final temperature of 0∘C)? Give your answer in kg to two decimal places. The specific heat of...
fast response needed One liter of water at 54◦C is used to make iced tea. How...
fast response needed One liter of water at 54◦C is used to make iced tea. How much ice at 0 ◦C must be added to lower the temperature of the tea to 12 ◦C? The specific heat of water is 1 cal/g · ◦ C and latent heat of ice is 79.7 cal/g. Answer in units of g.
What mass of steam at 100°C must be mixed with 216 g of ice at its...
What mass of steam at 100°C must be mixed with 216 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 65.0°C? The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg, and the latent heat of vaporization is 2256 kJ/kg.
What mass of steam at 100°C must be mixed with 162 g of ice at its...
What mass of steam at 100°C must be mixed with 162 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 71.0°C? The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg, and the latent heat of vaporization is 2256 kJ/kg.
What mass of steam at 100°C must be mixed with 260 g of ice at its...
What mass of steam at 100°C must be mixed with 260 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 73.0°C? The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg, and the latent heat of vaporization is 2256 kJ/kg
What mass of steam at 100°C must be mixed with 301 g of ice at its...
What mass of steam at 100°C must be mixed with 301 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 16.0°C? The specific heat of water is 4186 J/kg·K. The latent heat of fusion is 333 kJ/kg, and the latent heat of vaporization is 2256 kJ/kg.
To practice Problem-Solving Strategy 12.1 Calorimetry problems. On a hot summer day, you decide to make...
To practice Problem-Solving Strategy 12.1 Calorimetry problems. On a hot summer day, you decide to make some iced tea. First, you brew 1.50 L of hot tea and leave it to steep until it has reached a temperature of Ttea = 75.0 ∘C. You then add 0.975 kg of ice taken from the freezer at a temperature of Tice = 0 ∘C. By the time the mix reaches equilibrium, all of the ice has melted. What is the final temperature...
A well-insulated 0.2kg copper bowl contains 0.10kg of ice, both at −10◦ C. A very hot...
A well-insulated 0.2kg copper bowl contains 0.10kg of ice, both at −10◦ C. A very hot 0.35kg copper cylinder is dropped into it and the lid quickly closed. The final temperature of the system is 100◦C, with 5g of steam in the container. (a) How much heat was transferred to the water (in all phases); (b) How much to the bowl? (c) What must have been the original temperature of the cylinder? The specific heat of copper is 386 J/kg·K....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT