Question

A.) An electron is to be accelerated from a velocity of 3.00×106 m/s to a velocity...

A.) An electron is to be accelerated from a velocity of 3.00×106 m/s to a velocity of 8.50×106 m/s . Through what potential difference must the electron pass to accomplish this?

V(initial)-V(final) = ______ V

B.) Through what potential difference must the electron pass if it is to be slowed from 8.50×106 m/s to a halt?

V(initial)-V(final) = ______ V

Homework Answers

Answer #1

electron aquires kinetic energy as it accelerates through potential difference.

Work done by potential difference = change in kinetic energy

eV = final kinetic energy - initial kinetic energy

so

(a)

putting appropriate values of m (mass of electron) = 9.11E-31 kg, e (charge on electron) = (-1.6e-19) C and v1= 3E6 m/s, v2 = 8.5E6 m/s:

we get potential diff V = -180.06 volts

(b)

in above formula put V1 = 8.5E6 m/s and v2 = 0 m/s

required potential diff. V = 205 volts

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron is accelerated through a potential difference of 100 V. a. What is the velocity...
An electron is accelerated through a potential difference of 100 V. a. What is the velocity of the electron? v = _______ x10 6 m/s b. What is the momentum of the electron? p = _______ x10 -24 kg m/s c. What is the de Broglie wavelength of the electron? λ = _______ nm
3. (a) Calculate the speed of a proton that is accelerated from rest through an electric...
3. (a) Calculate the speed of a proton that is accelerated from rest through an electric potential difference of 136 V. m/s (b) Calculate the speed of an electron that is accelerated through the same potential difference. m/s
An electron that has a velocity with x component 1.9 × 106 m/s and y component...
An electron that has a velocity with x component 1.9 × 106 m/s and y component 3.4 × 106 m/s moves through a uniform magnetic field with x component 0.033 T and y component -0.15 T. (a) Find the magnitude of the magnetic force on the electron. (b) Repeat your calculation for a proton having the same velocity.
An electron that has a velocity with x component 2.0 × 106 m/s and y component...
An electron that has a velocity with x component 2.0 × 106 m/s and y component 3.9 × 106 m/s moves through a uniform magnetic field with x component 0.035 T and y component -0.21 T. (a) Find the magnitude of the magnetic force on the electron. (b) Repeat your calculation for a proton having the same velocity.
What is the final speed of a free electron accelerated from rest through a potential difference...
What is the final speed of a free electron accelerated from rest through a potential difference of -53 V? The mass of the electron is 9.11x10-31kg. You need to express the speed in km/s. You should round your answer to an integer, indicate only the number, do not include the unit.
An electron has an initial velocity of 2.2×106 m/s in the +x direction. It enters a...
An electron has an initial velocity of 2.2×106 m/s in the +x direction. It enters a uniform electric field E = 382 N/C which is in the +y direction. What is the ratio of the y-component of the velocity of the electron to the x-component of the velocity after traveling 9 cm in the +x direction in the field? (Your result must include 2 digit after the decimal point and maximum of 5% of error is accepted in your answer....
1. If an electron is accelerated from rest through an electric potential of 200 volts, a.determine...
1. If an electron is accelerated from rest through an electric potential of 200 volts, a.determine the final speed of the electron b. through what electrical potential must we accelerate an electron such that it's kinetic energy is equal to its rest mass energy? c. An electron is traveling at a speed of 10,000m/s. What is the kinetic energy of the electron in eV?
A proton starts with a velocity of 5.7 x105 m/s and is accelerated through a potential...
A proton starts with a velocity of 5.7 x105 m/s and is accelerated through a potential difference of 2.5 kV. It then enters a magnetic field of 1.3 T. What is the radius of curvature of the path the proton will take? (ANS: 7.2mm)
An electron, initially at rest, is accelerated through a potential difference of 285 V. It then...
An electron, initially at rest, is accelerated through a potential difference of 285 V. It then passes midway between two parallel plates providing a uniform electric field perpendicular to the direction in which it is travelling. The plates are 50 mm long and 25 mm apart and there is a potential difference of 71 V between them. Find (a) The speed of the electron after its initial acceleration and (b) The transverse deflection experienced by the electron as it emerges...
An electron is accelerated from rest by a potential difference of 350 V. It then enters...
An electron is accelerated from rest by a potential difference of 350 V. It then enters a uniform magnetic field of magnitude 200 mT with its velocity perpendicular to the field. Calculate the number of revolutions completed by the electron in 2 seconds.