Question

Suppose that you have obtained spectra of several galaxies and have measured the observed wavelength of...

Suppose that you have obtained spectra of several galaxies and have measured the observed wavelength of the H-alpha line (rest wavelength = 656.3nm) to be:

Galaxy 1: 659 nm. Galaxy 2: 666.5 nm. Galaxy 3: 676.6 nm.

10. [4pt] Calculate the redshift, z, for each of these galaxies.

11. [4pt] Calculate the radial velocity of each of these galaxies.

12. [4pt] Assuming a Hubble Constant of 69.6 km/s/Mpc, cal- culate the distance to each of these galaxies (answer in Mpc).

Sorry you dont need to do 13 and 14

10- 12 have no graph

Homework Answers

Answer #1

Redshift is defined as

where

is the observed wavelength and is the emitted wavelength

Galaxy 1

Galaxy 2

Galaxy 3:

The radial velocity of these galaxies are

Galaxy 1:

Galaxy 2:

Galaxy 3:

The distance to these galaxies are:

Galaxy 1:

Galaxy 2:

Galaxy 3:

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that you have obtained spectra of several galaxies and have measured the observed wavelength of...
Suppose that you have obtained spectra of several galaxies and have measured the observed wavelength of the H-alpha line (rest wavelength = 656.3nm) to be: Galaxy 1: 659.4 nm. Galaxy 2: 664.1 nm. Galaxy 3: 675.7 nm. 10. [4pt] Calculate the redshift, z, for each of these galaxies. 11. [4pt] Calculate the radial velocity of each of these galaxies. 12. [4pt] Assuming a Hubble Constant of 66.4 km/s/Mpc, calculate the distance to each of these galaxies (answer in Mpc).
11/ imagine that you have obtained spectra for several galaxies and have measured the redshift of...
11/ imagine that you have obtained spectra for several galaxies and have measured the redshift of each one to determine its speed away from us. Here are your results: Galaxy 1: recession velocity is 15000 km/s Galaxy 2: recession velocity is 20000 km/s Galaxy 3: recession velocity is 25000 km/s Estimate the distance to each galaxy from Hubble’s Law. Assume that H0 = 22km/s/Mlyr A/ The distances are as follows: Galaxy 1: 0.00147 Mlyr Galaxy 2: 0.000110 Mlyr Galaxy 3:...
1. You observe an AGN where you measure the MgII line (λ0 = 280 nm) at...
1. You observe an AGN where you measure the MgII line (λ0 = 280 nm) at an observed wavelength of λobs = 336 nm. Assuming a Hubble constant of 70 km s−1 Mpc−1 , what is the distance of this AGN in Mpc? 2. Jupiter has a mass of 2 × 1027 kg. If the Jupiter would collapse into a black hole, what would be its Schwarzschild radius? 3. You measured the redshift of a galaxy to be z= 0.35....
3/ which of the following stellar properties is the most fundamental to a star’s main-sequence and...
3/ which of the following stellar properties is the most fundamental to a star’s main-sequence and post-main sequence life? A/ temperature B/ mass C/ luminosity D/ radius 4/ Stars Moppit and Boppit orbit each other as members of a binary star system. Their period of rotation about their combined centre of mass is 10 years. The semi-major axis of Boppit’s orbit around the centre of mass is 15.25 AU. What is the combined mass of Moppit and Boppit? A/ Mmoppit...
1/ Alpha Centauri A is a star that is remarkably like our Sun...indeed, we can think...
1/ Alpha Centauri A is a star that is remarkably like our Sun...indeed, we can think of it as the Sun’s stellar twin. Alpha Centauri A lies at a distence of 4.4 light-years from Earth, and it has a luminosity of 5.88 x 10^26 W. Calculate the apparent brightness of Alpha Centauri A Suppose you have a light bulb that emits 100 W of visible light. How far away from you would you need to put that light bulb in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT