Question

Uniform rod with length 6.6 m and mass 9.2 kg is rotating about an axis passing...

Uniform rod with length 6.6 m and mass 9.2 kg is rotating about an axis passing distance 4 m from one of its ends. The moment of inertia of the rod about this axis (in kg m2) is

Homework Answers

Answer #1

hope you got. Rate my answer please

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A thin uniform rod has a length of 0.490 m and is rotating in a circle...
A thin uniform rod has a length of 0.490 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.37 rad/s and a moment of inertia about the axis of 3.50×10−3 kg⋅m2 . A bug initially standing on the rod at the axis of rotation decides to crawl out to the other end of...
A thin uniform rod has a length of 0.430 m and is rotating in a circle...
A thin uniform rod has a length of 0.430 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.32 rad/s and a moment of inertia about the axis of 3.20×10−3 kg⋅m2 . A bug initially standing on the rod at the axis of rotation decides to crawl out to the other end of...
A thin uniform rod has a length of 0.400 m and is rotating in a circle...
A thin uniform rod has a length of 0.400 m and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.34 rad/s and a moment of inertia about the axis of 2.50×10−3 kg⋅m2 . A bug initially standing on the rod at the axis of rotation decides to crawl out to the other end of...
A thin, rigid, uniform rod has a mass of 1.40 kg and a length of 2.50...
A thin, rigid, uniform rod has a mass of 1.40 kg and a length of 2.50 m. (a) Find the moment of inertia of the rod relative to an axis that is perpendicular to the rod at one end. (b) Suppose all the mass of the rod were located at a single point. Determine the perpendicular distance of this point from the axis in part (a), such that this point particle has the same moment of inertia as the rod...
A long, uniform rod of length  0.510 mm and is rotating in a circle on a frictionless...
A long, uniform rod of length  0.510 mm and is rotating in a circle on a frictionless table. The axis of rotation is perpendicular to the length of the rod at one end and is stationary. The rod has an angular velocity of 0.4 rad/srad/s and a moment of inertia about the axis of 2.70×10−3 kg⋅m2kg⋅m2 . An insect initially standing on the rod at the axis of rotation decides to walk to the other end of the rod. When the...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) angularmomentum a) Calculate the total moment of inertia of the system I...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg and m2 = 5.0kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 12.9 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) a) Calculate the total moment of inertia of the system I =...
A thin, 1-dimensional, uniform rod of mass M and length L lies on the x axis...
A thin, 1-dimensional, uniform rod of mass M and length L lies on the x axis with one end at the origin. (a) Find its moment of inertia tensor about the origin. (b) Find the moment of inertia tensor if the rod’s center is located at the origin.
A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a...
A rotating cylindrical rod of mass m=4 Kg and length l=1 meter is connected to a falling weight of 300 grams with a 2 meters string (Maximum distance covered by the falling weight). The distance from the wound string to the axis of rotation is 300 mm. The time taken by the falling weight to halfway is 2 seconds and to the bottom is 2.7 seconds. Change of angular momentum in the spinning rod Mass (Kg) Moment of Inertial of...
A rod of length l=0.8m and mass M= 3.7kg joins two particles with masses m1 =4.5kg...
A rod of length l=0.8m and mass M= 3.7kg joins two particles with masses m1 =4.5kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 a) Calculate the total moment of inertia of the system b) What is...