Question

Mass and coordinates of three particles are given: Mass, M1 = 3 kg, Coordinates: X =...

Mass and coordinates of three particles are given: Mass, M1 = 3 kg, Coordinates: X = 1, Y = 1 Mass, M2 = 2 kg, Coordinates: X = -1, Y = -1 Mass, M3 = 1 kg, Coordinates: X = 0, Y = 1 (a) Find the Moment of Inertia of the three particles about the X-axis (axis of rotation) (b) Find the Center of Mass of the three objects

Homework Answers

Answer #1

to calculate part a:

where:

li=moment of inertia

xi=around the x axis

mI=mass of each of the particles

lx=5kg

to calculate part b :

for the calculation of the center of mass of the three objects

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 3 kg point mass is at coordinates (4 m, 0 m) , a 7 kg...
A 3 kg point mass is at coordinates (4 m, 0 m) , a 7 kg mass is at (- 3, 4) and a 5kg mass is at (x, y) of (0, - 6) a) Find the moment of inertia about the x axis. lx=______kg-m2 b) Find the vertical center of mass coordinate, ycm=_____m c) Find lz=_____ kg-m2
Three particles have the following masses and center of mass coordinates: m1 = 2.50 kg, (0.150...
Three particles have the following masses and center of mass coordinates: m1 = 2.50 kg, (0.150 m, 0.420 m), m2 = 1.50 kg, (0.120 m, -0.350 m), and m3 = 2.00 kg, (-0.410 m, 0.520 m). The coordinate of the center of mass of the particle system is: a. (0.04 m, -0.261 m) b. (0.04 m, -0.261 m) c. (- 0.04 m, -0.261 m) d. (- 0.04 m, 0.261 m)
Let's consider a rigid system with three particles. Masses of these particles m1 = 3 kgs,...
Let's consider a rigid system with three particles. Masses of these particles m1 = 3 kgs, m2 = 4 kg, m3 = 2 kgs, and their positions are (1, 0, 1), (1, 1, -1) and Let it be (1, -1, 0). Locations are given in meters. a) What is the inertia tensor of the system? b) What are the main moments of inertia? c) What are the main axes?( this part is also important for me )
Four objects are held in position at the corners of a rectangle by light rods as...
Four objects are held in position at the corners of a rectangle by light rods as shown in the figure below. (The mass values are given in the table.) m1 (kg) m2 (kg) m3 (kg) m4 (kg) 3.30 2.10 3.50 2.10 (b) Find the moment of inertia of the system about the y-axis. kg · m2 (c) Find the moment of inertia of the system about an axis through O and perpendicular to the page. kg · m2
Rigid rods of negligible mass lying along the y axis connect three particles. The system rotates...
Rigid rods of negligible mass lying along the y axis connect three particles. The system rotates about the x axis with an angular speed of 3.20 rad/s. An x y plane is shown. Three particles are all connected to each other by two rigid rods that are along the y-axis. The 4.00 kg particle is located at y = 3.00 m. The 2.00 kg particle is located at y = −2.00 m. The 3.00 kg mass is located at y...
Rigid rods of negligible mass lying along the y axis connect three particles. The system rotates...
Rigid rods of negligible mass lying along the y axis connect three particles. The system rotates about the x axis with an angular speed of 2.40 rad/s. An x y plane is shown. Three particles are all connected to each other by two rigid rods that are along the y-axis. The 4.00 kg particle is located at y = 3.00 m. The 2.00 kg particle is located at y = −2.00 m. The 3.00 kg mass is located at y...
1. A point mass of 3 kg is located at x = 0 m, y =...
1. A point mass of 3 kg is located at x = 0 m, y = -0.6 m, a point mass of 5 kg is located at x = 0 m, y = +0.7 m, and a point mass of 6 kg is located at x = 0.9 m, y = 0 m. What is the moment of inertia of these masses about the the x axis in kg m2? . 2. A point mass of 2 kg is located...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) angularmomentum a) Calculate the total moment of inertia of the system I...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg and m2 = 5.0kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 12.9 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) a) Calculate the total moment of inertia of the system I =...
There is object-1 of mass m1=2.84kg moving on +x axis with the velocity of v1=9.62m/s. Object-1...
There is object-1 of mass m1=2.84kg moving on +x axis with the velocity of v1=9.62m/s. Object-1 is explode into two segments of masses m2=1.74 kg and m3=1.10kg. Mass m2 moves in +250 with the velocity of 3.57m/s. a) Find the x and y-components of velocity of mass m3 after collision? (4 points) b) Find the velocity component of x-direction of the center of mass of the two-particle system after collision. Find the velocity component of y-direction of the center of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT