Question

a 85.5 kg block oscillates on the end of an ideal spring( spring constant 105 N/m) with simple harmonic motion of amplitude A=4.75 cm. Assume there is no friction anywhere. During this motion: when the spring is stretched distance 0.327A from equilibrium: Find the fraction of its total energy that is kinetic energy.

Answer #1

Step by step solution are as follows

A 0.150-kg cart is attached to an ideal spring with a force
constant of (spring constant) of 3.58 N/m undergoes simple harmonic
motion and has a speed of 1.5 m/s at the equilibrium position. At
what distance from the equilibrium position are the kinetic energy
and potential energy of the system the same?

Part A
A block of unknown mass is attached to a spring with a spring
constant of 5.50 N/m and undergoes simple harmonic motion with an
amplitude of 10.0 cm. When the block is halfway between its
equilibrium position and the end point, its speed is measured to be
28.0 cm/s.
(a) Calculate the mass of the block.
________kg
(b) Calculate the period of the motion.
________s
(c) Calculate the maximum acceleration of the block.
________m/s2
Part B
A block-spring...

A particle with mass 2.61 kg oscillates horizontally at the end
of a horizontal spring. A student measures an amplitude of 0.923 m
and a duration of 129 s for 65 cycles of oscillation. Find the
frequency, ?, the speed at the equilibrium position, ?max, the
spring constant, ?, the potential energy at an endpoint, ?max, the
potential energy when the particle is located 68.5% of the
amplitude away from the equiliibrium position, ?, and the kinetic
energy, ?, and...

A block of unknown mass is attached to a spring with a spring
constant of 7.00 N/m and undergoes simple harmonic motion with an
amplitude of 11.5 cm. When the block is halfway between its
equilibrium position and the end point, its speed is measured to be
25.0 cm/s.
(a) Calculate the mass of the block.
kg
(b) Calculate the period of the motion.
s
(c) Calculate the maximum acceleration of the block.
m/s2

A 0.9 kg block attached to a spring of force constant 13.1 N/m
oscillates with an amplitude of 3 cm.
A) Find the maximum speed of the block. Answer in units m/s.
B) Find the speed of the block when it is 1.5 cm from the
equilibrium position. Answer in units of m/s.
C) Find its acceleration at 1.5 cm from the equilibrium
position. Answer in units of m/s2.
D) Find the time it takes for the block to move...

A block of unknown mass is attached to a spring with a spring
constant of 5.50 N/m and undergoes simple harmonic motion with an
amplitude of 10.0 cm. When the block is halfway between its
equilibrium position and the end point, its speed is measured to be
27.0 cm/s.
(a) Calculate the mass of the block.
(b) Calculate the period of the motion.
(c) Calculate the maximum acceleration of the block.

A 0.1-kg ball is attached to the end of an ideal spring having a
force constant (spring constant) of 600 N/m.
If the spring is compressed 18 cm and released, what is the
speed of the ball when it reaches a distance of 12 cm from the
equilibrium position?
Determine the period.
Determine the amplitude.
Determine the maximum speed.
Determine the total energy.

A 2.30 kg frictionless block is attached to an ideal spring with
force constant 314 N/m . Initially the block has velocity -3.50 m/s
and displacement 0.240 m .
Find the amplitude of the motion.?
Find the maximum acceleration of the block.?
Find the maximum force the spring exerts on the block.?

. A block of mass 2.00 kg is attached to a horizontal spring
with a force constant of 500 N/m. The spring is stretched 5.00 cm
from its equilibrium position and released from rest. Use
conservation of mechanical energy to determine the speed of the
block as it returns to equilibrium
(a) if the surface is frictionless
(b) if the coefficient of kinetic friction between the block and
the surface is 0.350

A 5
kg block of wood connected to a horizontal spring (constant 130
N/m) is at rest on a frictionless plane. Bullet (50 mg) is fired at
block and horizontal velocity is 25 m/s and bullet is stuck in it.
The block goes through simple harmonic oscillation.
What is the amplitude of resulting oscillation?
What is the total mechanical energy of the block with the
bullet inside?
What is the magnitude of velocity of the block with the bullet
when...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 8 minutes ago

asked 8 minutes ago

asked 14 minutes ago

asked 16 minutes ago

asked 17 minutes ago

asked 30 minutes ago

asked 34 minutes ago

asked 35 minutes ago

asked 43 minutes ago

asked 47 minutes ago

asked 47 minutes ago

asked 51 minutes ago