Question

1.) 2500 C of charge is passed over a 2 hour period across a certain capacitor...

1.) 2500 C of charge is passed over a 2 hour period across a certain capacitor (a device that stores electrical energy in an electric field). What is the resistance of this capacitor if the voltage across it is 200 mV.

2.) What is the power of a microchip that passes 1 C of charge with a potential difference of 0.001 mV in 1 second.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a 1 nF capacitor is operated at the room temperature (20 °C). a) What is...
Consider a 1 nF capacitor is operated at the room temperature (20 °C). a) What is the rms noise voltage that we should expect to measure across it, even in the absence of a signal? b) What’s the theoretical limit of the energy required to charge this capacitor with a certain amount of electrical charge Q? c) ( Following b), what’s the implication on computation
A) Charge a 3 microfarad capacitor by hooking it to a battery (a voltage difference supplier)...
A) Charge a 3 microfarad capacitor by hooking it to a battery (a voltage difference supplier) that has a potential difference of 15 volts. a) What is the charge on one the capacitor plates? b) If the plate separation is 2 x 10-6 meters, what is the electric field between the plates? c) How much energy is stored? B) Leaving the battery connected, you insert a dielectric with a constant of 3.7 between the plate of the capacitor. a) What...
2. A section of membrane behaves as a capacitor. a) Find the capacitance C if the...
2. A section of membrane behaves as a capacitor. a) Find the capacitance C if the area is 2.5 square mm, the membrane thickness is 0.75 µm and the dielectric constant K is 3.5. b) If the voltage across the membrane is DV = 75 mV, what is the charge ±Q on each surface A? c) How many ions (electrons) does this charge +Q (-Q) correspond to? d) For this section of membrane (DV and Q as above) what is...
1. What potential difference is needed to accelerate a He+ ion (charge +e, mass 4u) from...
1. What potential difference is needed to accelerate a He+ ion (charge +e, mass 4u) from rest to a speed of 1.1×106 m/s ? 2. Two 2.00 cm × 2.00 cm plates that form a parallel-plate capacitor are charged to ± 0.708 nC . a) What is the electric field strength inside the capacitor if the spacing between the plates is 1.30 mm ? b)What is potential difference across the capacitor if the spacing between the plates is 1.30 mm...
1. A parallel plate capacitor has a charge on one plate of q = 1.8E-06 C....
1. A parallel plate capacitor has a charge on one plate of q = 1.8E-06 C. Each square plate is d1 = 1.4 cm wide and the plates of the capacitor are separated by d2 = 0.25 mm. The gap is filled with air, εo = 8.85 × 10-12 C2/Nm2. a. What is the voltage between the plates, ΔV, in V? b. What plate width would double this voltage, in centimeters? 2. Consider two points in an electric field. The...
28-2 Camera flash The camera flash is a capacitor that stores a charge of 0.073 C...
28-2 Camera flash The camera flash is a capacitor that stores a charge of 0.073 C at 330 V. The flash releases energy to a light bulb with a resistance 5 Ω. This is an RC circuit, so the power will decay. Find the: a) capacitance of the flash in μF. Eq. (26.15) b) initial power in kW used by the light bulb. Eq. (28.12) c) decay time constant τ in ms. Eq. (28.30)
1,The same voltage is applied between the plates of two different capacitors. When used with capacitor...
1,The same voltage is applied between the plates of two different capacitors. When used with capacitor A, this voltage causes the capacitor to store 15 μC of charge and 3.4 x 10-5 J of energy. When used with capacitor B, which has a capacitance of 7.9 μF, this voltage causes the capacitor to store a charge that has a magnitude of qB. Determine qB. 2,The membrane that surrounds a certain type of living cell has a surface area of 6.0...
1. A -140 μC charge is located 60 mm from a point we will designate as...
1. A -140 μC charge is located 60 mm from a point we will designate as G and is 30mm from a point we will designate as H. a) What is the electrical potential difference between the two points (G and H)? b) If a charge of +15 μC is moved from the point G to the point H, what is the work done by the electric field? 2. Determine the resistance of a motor which operates at a power...
A battery with potential different E charges an ideal circular parallel-plate capacitor of capacitance C, plate...
A battery with potential different E charges an ideal circular parallel-plate capacitor of capacitance C, plate radius r0 and separation between the plates d, through a wire with resistance R. The total charge on each plate as a function of time is : Q(t) = CE(1-eˆ(-t/RC)). Consider the surface charge density uniform on the plates. 1. Find the electric flux between the plates as a function of time. 2. The rate of change of the electric flux between the plates...
A +1 C charge is placed at position (x,y)=(-2 m,0). A +1.5 C charge is placed...
A +1 C charge is placed at position (x,y)=(-2 m,0). A +1.5 C charge is placed at position (x,y)=(2 m, 0). a)  What is the electric potential energy of this charge configuration? b)  What is the electric field (magnitude and direction) at the origin? c) What is the electric field (magnitude and direction) at position (x,y)=(0 m, 1 m)? Please enter your answers in the space below and email your work.