Question

banked curve define and example and formula?

banked curve define and example and formula?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A car is traveling around a banked curve without friction which is banked at 28 degrees....
A car is traveling around a banked curve without friction which is banked at 28 degrees. It is originally moving at 14 m/s. A constant acceleration of 2.5 m/s2 in the direction is applied in the direction that it is moving which causes the car to speed up. If this acceleration is applied for 2.7 seconds, how far did the car move up the road (the incline) in meters?
A car merges onto the freeway on a banked curve. The car maintains a constant velocity...
A car merges onto the freeway on a banked curve. The car maintains a constant velocity 푣 while driving on the curve, which is banked at angle theta and has a radius of curvature R. The car has mass m and the coefficient of static friction between the car’s tires and the road is meu(s). What is the maximum and minimum speed that the car can go around the banked curve without slipping? Hint: The car tends to slip up...
A car rounds a 50 meter radius curve that is banked such that a car rounding...
A car rounds a 50 meter radius curve that is banked such that a car rounding it does not need friction at a speed of 12 m/s. What is the bank angle of the road? The coefficient of kinetic friction between the tires and the road is 0.5 and the coefficient of static friction between the tires and the road is 0.8. If the same road were flat (instead of banked), determine the maximum speed with which the coar could...
If a car takes a banked curve at less than the ideal speed, friction is needed...
If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the curve (a real problem on icy mountain roads). (a) Calculate the ideal speed to take a 105 m radius curve banked at 15°. Correct: Your answer is correct. m/s (b) What is the minimum coefficient of friction needed for a frightened driver to take the same curve at 30.0 km/h?
A car is on a banked curve Angle is 13 degrees with r = 150. Static...
A car is on a banked curve Angle is 13 degrees with r = 150. Static fric = 0.35 What is the max speed and minimum speed it can make this curve?
A curve at a racetrack has a radius of 600 m and is banked at an...
A curve at a racetrack has a radius of 600 m and is banked at an angle of 7.0 degrees. On a rainy day, the coefficient of friction between the cars' tires and the track is 0.50. Part A. What is the maximum speed at which a car could go around this curve without slipping? Give answer as vmax= and m/s
If a car takes a banked curve at less than the ideal speed, friction is needed...
If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the curve (a real problem on icy mountain roads). (a) Calculate the ideal speed to take a 125-m radius curve banked at 14.0°. Did you draw a free body diagram and label all forces acting on a vehicle? km/h (b) What is the minimum coefficient of friction needed for a frightened driver to take the...
If a curve with a radius of 81 m is properly banked for a car traveling...
If a curve with a radius of 81 m is properly banked for a car traveling 67 km/h , what must be the coefficient of static friction for a car not to skid when traveling at 82 km/h ?
If a curve with a radius of 82 m is properly banked for a car traveling...
If a curve with a radius of 82 m is properly banked for a car traveling 75 km/h , what must be the coefficient of static friction for a car not to skid when traveling at 100 km/h ?
A BMW is going around a banked curve in the road. It is part of a...
A BMW is going around a banked curve in the road. It is part of a circle with radius 125 m . An automobile that goes around the curve with speed 20 m/s does not require any friction force to not slip, but this BMW is going around the curve at 38.8 m/s. What's the smallest value the coefficient of friction (between the tires of the BMW and the road) that can be without any slipping? Answer= .64 **But, How?**
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT