Question

Two cars, both of mass m, collide and stick together. Prior to the collision, one car...

Two cars, both of mass m, collide and stick together. Prior to the collision, one car had been traveling north at speed 3v, while the second was traveling at speed 2v at an angle ? south of east (as indicated in the figure). After the collision, the two-car system travels at speed vfinal at an angle ? east of north. (Figure 1) Find the speed vfinal of the joined cars after the collision. Express your answer in terms of v and ?.

Homework Answers

Answer #1

for car 1

mass=m

velocity=3v in north dirtection

for car 2

mass=m

velocity=2v at angle south of east

after collision

mass = 2m

velocity= at an angle east to north.

so whole system looks like this

so conserving linear momentum in x-direction

......(1)

in y-direction

.......(2)

now by solving eq (1) and (2)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two identical cars collide at an intersection(m=1500kg). Car 1 is traveling east with a speed of...
Two identical cars collide at an intersection(m=1500kg). Car 1 is traveling east with a speed of 16 m/s and car 2 is traveling north with a speed of 12 m/s. Immediately after the collison, car 1 travels with a speed of 8 m/s in a direction 60 north of east. The cars do not stick together. (a) What is the speed and direction of travel for car 2 after the collision? (b) What is the change in kinetic energy of...
two putty balls, one of mass M and the other of mass 2M, collide and stick...
two putty balls, one of mass M and the other of mass 2M, collide and stick together. just before the collision, the ball with mass 2m is moving at an angle theta, with respect to the +y direction with speed V, and ball with mass M is moving in the +x direction with speed 2V. (derive and expression using the coordinate system provided, in terms of system parameters, for the KE of the combined object after collision.?)
Two cars collide at an intersection. Car A, with a mass of 1800 kg , is...
Two cars collide at an intersection. Car A, with a mass of 1800 kg , is going from west to east, while car B , of mass 1300 kg , is going from north to south at 16 m/s . As a result of this collision, the two cars become enmeshed and move as one afterwards. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle...
Two 200 kg cars approach an intersection. One car is traveling east at 18 m/s. The...
Two 200 kg cars approach an intersection. One car is traveling east at 18 m/s. The second car is traveling north at 24 m/s. They both collide and violently stick together. Immediately after the collision they are moving
Two cars collide at an intersection. Car A, with a mass of 2000 kg , is...
Two cars collide at an intersection. Car A, with a mass of 2000 kg , is going from west to east, while car B , of mass 1400 kg , is going from north to south at 17.0 m/s . As a result of this collision, the two cars become enmeshed and move as one afterward. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle...
Two cars collide at an intersection. Car A, with a mass of 2000 kg, is going...
Two cars collide at an intersection. Car A, with a mass of 2000 kg, is going from west to east, while car of mass 1500 kg, is going from north to south at 15 m/s. As a result, the two cars become enmeshed and move as one. As an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle of 52∘ south of east from the point of impact. How fast...
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1250 kg and is approaching at 9.5 m/s due south. The second car has a mass of 550 kg and is approaching at 17 m/s due west.Calculate the direction of the final velocity, in degrees south of west, of the cars.What is the change in kinetic energy, in joules, for the collision? (This energy goes into deformation of the cars.)  
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1100 kg and is approaching at 9.5 m/s due south. The second car has a mass of 950 kg and is approaching at 15 m/s due west. Part (a) Calculate the magnitude of the final velocity, in meters per second, of the cars. Part (b) Calculate the direction of the final velocity, in degrees south of west, of the cars. Part (c)...
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1350 kg and is approaching at 9.5 m/s due south. The second car has a mass of 750 kg and is approaching at 17.5 m/s due west. Part (a) Calculate the magnitude of the final velocity, in meters per second, of the cars. Part (b) Calculate the direction of the final velocity, in degrees south of west, of the cars. Part (c)...
Two pieces of clay are moving directly toward each other. When they collide, they stick together...
Two pieces of clay are moving directly toward each other. When they collide, they stick together and move as one piece. One piece has a mass of 324 grams and is moving to the right at a speed of 1.15 m/s. The other piece has mass 625 grams and is moving to the left at a speed of 0.87 m/s. What fraction of the total initial kinetic energy is lost during the collision? In other words what is (KE?i???KE?f???? )/...