Question

A proton and a deuteron (which has the same charge as the proton but 2.0 times...

A proton and a deuteron (which has the same charge as the proton but 2.0 times the mass) are incident on a barrier of thickness 10.5 fm and “height” 11.1 MeV. Each particle has a kinetic energy of 2.80 MeV.


a.) Which particle has the higher probability of tunneling through the barrier?

   a. Photon

   b. none of them will pass through the   barrier

   c. both have same probability


b. What is the ratio of the tunneling probability of the proton to the tunneling probability of the deuteron?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A beam of protons of energy 3.75 MeV is incident on a barrier of height...
1. A beam of protons of energy 3.75 MeV is incident on a barrier of height 18.00 MeV and thickness 1.65 fm (1.65 x 10^ -15 m). (a) What is the probability of the protons tunneling through the barrier? (b) By what factor does the probability change if the barrier thickness is doubled ?
A 1.5 eV electron has a 10-4 probability of tunneling through a 2.0 eV potential barrier....
A 1.5 eV electron has a 10-4 probability of tunneling through a 2.0 eV potential barrier. What is the probability of a 1.5 eV proton tunneling through the same barrier?
An electron has a kinetic energy of 13.4 eV. The electron is incident upon a rectangular...
An electron has a kinetic energy of 13.4 eV. The electron is incident upon a rectangular barrier of height 19.6 eV and width 1.00 nm. If the electron absorbed all the energy of a photon of green light (with wavelength 546 nm) at the instant it reached the barrier, by what factor would the electron's probability of tunneling through the barrier increase?
A proton, a deuteron, and an α-particle are accelerated from rest through a potential difference, ∆V...
A proton, a deuteron, and an α-particle are accelerated from rest through a potential difference, ∆V = 30 kV. They enter a region containing a uniform magnetic field of strength B = 0.25 T. The particles move parallel to each other and perpendicular to B~ . (a) Compute the kinetic energy of each particle. Which is largest? Which is smallest? By what factor? (b) Compute the radius of each particle’s cyclotron orbit. (c) Critical Thinking. Is this setup effective for...
An alpha particle is a nucleus of helium-4. It has twice the charge and four times...
An alpha particle is a nucleus of helium-4. It has twice the charge and four times the mass of the proton. An alpha particle and a proton are initially at rest a distance of 2.0 × 10^-13 m from each other. After they are released, what are their velocities when they are very far from each other?  Hint: There are two conserved quantities. Make use of both of them. (c = 3.00 × 10^8 m/s, k = 9.0 × 10^9 N...
1. The shorter the wavelength of a photon, the more the photon behaves like a particle....
1. The shorter the wavelength of a photon, the more the photon behaves like a particle. Why? 2. In a H2 molecule there are two protons, and these have spin 1/2 ħ, that is, they are fermions. If we just look at the two protons, would you expect their spins to be parallel or anti parallel in the ground state of the H2 molecule? 3. Is there a type of viscosity that acts on holes in a semiconductor and gives...
An alpha particle (α), which is the same as a helium-4 nucleus, is momentarily at rest...
An alpha particle (α), which is the same as a helium-4 nucleus, is momentarily at rest in a region of space occupied by an electric field. The particle then begins to move. Find the speed of the alpha particle after it has moved through a potential difference of −3.45×10−3 V .The charge and the mass of an alpha particle are qα = 3.20×10−19 C and mα = 6.68×10−27 kg , respectively. Part A Mechanical energy is conserved in the presence...
1) 2 point charges are separated by a distance of 8 cm. The left charge is...
1) 2 point charges are separated by a distance of 8 cm. The left charge is 48 mC and the right charge is -16mC. Using a full sheet of paper: draw the 2 charges separated by 8cm, centered in the sheet. (if you are missing a ruler estimate 8cm as ⅓ a paper sheet length). [6] a) Draw field lines to indicate the electric fields for this distribution. [4] b) Draw 3 equipotential surfaces, 1 each, that pass: -Through the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT