Question

The maximal light wavelength capable to emit electrons from a certain metal is 660nm. Now, light...

The maximal light wavelength capable to emit electrons from a certain metal is 660nm. Now, light of wavelength of400nm incident on this metal.
What is the maximal kinetic energy (in ev) of the emitted electrons?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. Light of wavelength 401 nm incident on a certain metal produces photoelectrons with a maximum...
1. Light of wavelength 401 nm incident on a certain metal produces photoelectrons with a maximum kinetic energy of 1.78 eV. What is the maximum wavelength of light capable of producing photoelectrons for this metal? 2. Electrons in an electron microscope have been accelerated through a potential difference of 1250 V. How large is their de Brogile wavelength?
A metal target is irradiated with UV light at 240 nm. Electrons are emitted and they...
A metal target is irradiated with UV light at 240 nm. Electrons are emitted and they have a broad range of kinetic energies up to a maximum value of 0.75 eV. The experiment is restarted, this time beginning with a wavelength of 500 nm. The frequency of the incident light is increased until the metal just begins to emit electrons. What is this threshold frequency and corresponding wavelength?
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work...
Light of wavelength 235 nm is incident on Magnesium in a photoelectric effect experiment. The work function of Magnesium is 3.68 eV. (a) What is the maximum kinetic energy of the emitted electrons, in eV? (b)What is the maximum velocity of the emitted electrons, in m/s? (c) What is the stopping potential, in Volts, that results in no collected photoelectrons? (d) Light of wavelength 235 nm is now incident on lead (work function 5.40 eV). What is the maximum kinetic...
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus....
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21 V was obtained. What is the threshold frequency of the metal? (format of a.b x 10cdHz) b) Light with a frequency of 5.00 x 1014 Hz illuminates a photoelectric surface that has a work function of 2.10 x 10-19 J. What is the maximum kinetic energy of the emitted photoelectrons? (format of a.bc x 10-de J ) c) Light...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K_0 of the photoelectrons when light of wavelength 340 nm falls on the same surface? Use h = 6.63×10−34 J⋅s for Planck's constant and c = 3.00×108 m/s for the speed of light and express your answer in electron volts. View Available Hint(s) K_0 =    eV
When ultraviolet light with a wavelength of 400 nmfalls on a certain metal surface, the maximum...
When ultraviolet light with a wavelength of 400 nmfalls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K0 of the photoelectrons when light of wavelength 350 nm falls on the same surface? Use h = 6.63×10?34 J?s for Planck's constant and c = 3.00×108 m/s for the speed of light and express your answer in electron volts.
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the...
When ultraviolet light with a wavelength of 400 nm falls on a certain metal surface, the maximum kinetic energy of the emitted photoelectrons is 1.10 eV . What is the maximum kinetic energy K0 of the photoelectrons when light of wavelength 330 nm falls on the same surface? Use h = 6.63×10?34J?s for Planck's constant and c = 3.00×108m/s for the speed of light and express your answer in electron volts.
The maximum kinetic energy of the emitted electrons is found to be 1.255 eV when a...
The maximum kinetic energy of the emitted electrons is found to be 1.255 eV when a metal surface is illuminated by light with a wavelength of 400 nm. When the same metal surface is illuminated by light with a different wavelength, the maximum kinetic energy of the emitted electrons is found to be 0.634 eV. What is the wavelength of this light in nm?
2a) When a metal surface is illuminated by light of wavelength 310 nm, the measured maximum...
2a) When a metal surface is illuminated by light of wavelength 310 nm, the measured maximum kinetic energy of the emitted electrons is 0.50 eV. Calculate the metal plate’s work function φ in units of eV. b) In the rest frame of an ejected electron from the photoelectric experiment in part a), an incident γ-ray with an energy of 0.25 MeV interacts with the electron. Following the collision, the γ-ray has a final energy of 0.1 MeV. Calculate the angle...
When light of wavelength 300.0 nm is incident on potassium, the emitted electrons have maximum kinetic...
When light of wavelength 300.0 nm is incident on potassium, the emitted electrons have maximum kinetic energy of 2.03 eV. A) Calculate the work function for potassium. B) Calculate the stopping potential if the incident light, instead, has a wavelength of 400.0 nm. C) Now, assume that the incident light has an intensity of 0.01 W/m^2, and that the potassium atom has an area of 0.01 nm^2. Using classical physics, estimate the time required for an energy equal to the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT