Question

What will be the equilibrium temperature when a 243 g block of copper at 263 ∘C...

What will be the equilibrium temperature when a 243 g block of copper at 263 ∘C is placed in a 143 g aluminum calorimeter cup containing 808 g of water at 14.4 ∘C?

Homework Answers

Answer #2

Suppose the final temperature is T.

Now Using energy conservation:

Heat gained by water and calorimeter = Heat released by copper

Q1 + Q2 = Q3

m1*C1*dT1 + m2*C2*dT2 = m3*C3*dT3

dT1 = Tf - Ti = T - 14.4

dT2 = T - 14.4

dT3 = 263 - T

m1 = mass of water = 0.808 kg

m2 = mass of calorimeter = 0.143 kg

m3 = mass of copper = 0.243 kg

Now using given values:

0.808*4186*(T - 14.4) + 0.143*900*(T - 14.4) = 0.243*390*(263 - T)

Now Solving above equation

T = (0.808*4186*14.4 + 0.143*900*14.4 + 0.243*390*263)/(0.808*4186 + 0.143*900 + 0.243*390)

T = 20.93 C

Please Upvote.

answered by: anonymous
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘. What will be the equilibrium temperature when a 215 g block of copper at 245 ∘C is placed in a 155 g aluminum calorimeter cup containing 815 g of water at 16.0 ∘C?
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘ What will be the equilibrium temperature when a 215 g block of copper at 245 ∘C is placed in a 155 g aluminum calorimeter cup containing 875 g of water at 12.0 ∘C?
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘,and for...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘,and for water is 4186 J/kg⋅C∘. What will be the equilibrium temperature when a 275 g block of copper at 255 ∘C is placed in a 155 g aluminum calorimeter cup containing 815 g of water at 16.0 ∘C?
The value of specific heat for copper is 390 J/kg?C?, for aluminun is 900 J/kg?C?, and...
The value of specific heat for copper is 390 J/kg?C?, for aluminun is 900 J/kg?C?, and for water is 4186 J/kg?C?. What will be the equilibrium temperature when a 215 g block of copper at 255 ?C is placed in a 155 g aluminum calorimeter cup containing 875 g of water at 16.0 ?C?
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and...
The value of specific heat for copper is 390 J/kg⋅C∘, for aluminun is 900 J/kg⋅C∘, and for water is 4186 J/kg⋅C∘. What will be the equilibrium temperature when a 215 g block of copper at 255 ∘C is placed in a 155 g aluminum calorimeter cup containing 845 g of water at 14.0 ∘C? Express your answer using three significant figures.
A 49-g block of copper at -11 ∘C is added to 140 g of water in...
A 49-g block of copper at -11 ∘C is added to 140 g of water in a 74-g aluminum cup. The cup and the water have an initial temperature of 4.1 ∘C. Find the equilibrium temperature of the cup and its contents.
8. A 180 g block of copper heated to 120 degrees Celsius dropped into a 360...
8. A 180 g block of copper heated to 120 degrees Celsius dropped into a 360 g aluminum calorimeter container containing 440 g of water. If the initial temperature of the calorimeter and the water is 20 °C, what is the final equilibrium temperature of the system? 9. 25 g steam at 110 °C is added temperature of the resulting water 100 g of ice at -10 °C in an insulated container. What is the final temperature of the resulting...
A 125-g block of aluminum at room temperature (21°C) is placed into 150 g of boiling...
A 125-g block of aluminum at room temperature (21°C) is placed into 150 g of boiling water (100°C). If the aluminum block and water form a closed system, what will their temperature be when they achieve thermal equilibrium?
You drop a 285-g silver figure of a polar bear into the 241-g aluminum cup of...
You drop a 285-g silver figure of a polar bear into the 241-g aluminum cup of a well-insulated calorimeter containing 263 g of liquid water at 23.9°C. The bear\'s initial temperature is 95.9°C. What is the final temperature of the water, cup, and bear when they reach thermal equilibrium? The specific heats of silver, aluminum, and liquid water are, respectively, 234 J/(kg·K), 910 J/(kg·K), and 4190 J/(kg·K).
An aluminum cup contains 225 g of water and a 40-g copper stirrer, all at 27°C....
An aluminum cup contains 225 g of water and a 40-g copper stirrer, all at 27°C. A 500-g sample of silver at an initial temperature of 90°C is placed in the water. The stirrer is used to stir the mixture gently until it reaches its final equilibrium temperature of 32°C. Calculate the mass of the aluminum cup. g
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT