Question

In a series oscillating RLC circuit, R = 16.4 Ω, C = 30.9 μF, L =...

In a series oscillating RLC circuit, R = 16.4 Ω, C = 30.9 μF, L = 9.74 mH, and E = Emsinωdt with Em = 45.2 V and ωd = 2940 rad/s. For time t = 0.431 ms find (a) the rate Pg at which energy is being supplied by the generator, (b) the rate PC at which the energy in the capacitor is changing, (c) the rate PL at which the energy in the inductor is changing, and (d) the rate PR at which energy is being dissipated in the resistor.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In a series oscillating RLC circuit, R = 15.5 Ω, C = 31.6 μF, L =...
In a series oscillating RLC circuit, R = 15.5 Ω, C = 31.6 μF, L = 9.32 mH, and E = Emsinωdt with Em = 44.6 V and ωd = 3070 rad/s. For time t = 0.432 ms find (a) the rate Pg at which energy is being supplied by the generator, (b) the rate PC at which the energy in the capacitor is changing, (c) the rate PL at which the energy in the inductor is changing, and (d)...
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C...
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C = 32 μF. The circuit is connected to a 10-V (rms), 600-Hz AC source. (a) Is the sum of the voltage drops across R, L, and C equal to 10 V (rms)? (b) Which is greatest, the power delivered to the resistor, to the capacitor, or to the inductor? (c) Find the average power delivered to the circuit.  W
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . The current amplitude across the inductor, the resistor, and the capacitor is 0.814A...now, double the frequency and... a. Find new current amplitude across the inductor, the resistor, and the capacitor. b. Find new voltage amplitudes across the inductor, the resistor, and the capacitor.
An L-R-C series circuit L = 0.123 H , R = 242 Ω , and C...
An L-R-C series circuit L = 0.123 H , R = 242 Ω , and C = 7.32 μF carries an rms current of 0.445 A with a frequency of 401 Hz . a. What is the phase angle? b. What is the power factor for this circuit? c. What is the impedance of the circuit? d. What is the rms voltage of the source? e) What is the average rate at which electrical energy is converted to thermal energy...
An L-R-C series circuit L = 0.121 H , R = 240 Ω , and C...
An L-R-C series circuit L = 0.121 H , R = 240 Ω , and C = 7.31 μF carries an rms current of 0.452 A with a frequency of 400 Hz . A. What is the phase angle B. What is the power factor for this circuit. C. What is the impedence of the circuit D. What is the RMS voltage of the source. E) What is the average rate at which electrical energy is converted to thermal energy...
A series RLC circuit contains a 210 Ω resistor, a 17.0 mH inductor, a 2.70 μF...
A series RLC circuit contains a 210 Ω resistor, a 17.0 mH inductor, a 2.70 μF capacitor, and an AC voltage source of amplitude 45.0 V operating at an angular frequency of 360 rad/s. (a) What is the power factor of this circuit? (b) Find the average power delivered to the entire circuit by the source, in W (c) What is the average power delivered to the capacitor, in W?
Question 1: An L-R-C series circuit L = 0.117 H , R = 243 Ω ,...
Question 1: An L-R-C series circuit L = 0.117 H , R = 243 Ω , and C = 7.27 μF carries an rms current of 0.448 A with a frequency of 402 Hz . What is the phase angle, answer in (radians) What is the power factor of this circuit? What is the impedance of the circuit? What is the rms voltage of the source? What is the average rate at which electrical energy is converted to thermal energy...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00...
An L-R-C series circuit consists of a 60.0 Ω resistor, a 16.0 μF capacitor, a 4.00 mH inductor, and an ac voltage source of voltage amplitude 55.0 V operating at 1500 Hz . a. Find the current amplitude across the inductor, the resistor, and the capacitor. b. Find the voltage amplitudes across the inductor, the resistor, and the capacitor. Enter your answers numerically separated by commas. (VL, VR, VC) e. Find new current amplitude across the inductor, the resistor, and...
Consider a series RLC circuit where R = 651 Ω and C = 6.25 μF. However,...
Consider a series RLC circuit where R = 651 Ω and C = 6.25 μF. However, the inductance L of the inductor is unknown. To find its value, you decide to perform some simple measurements. You apply an ac voltage that peaks at 72.0 V and observe, using an oscilloscope, that the resonance angular frequency occurs at 39700 s–1. What is the inductance of the inductor in millihenrys?
An LRC series circuit has with R = 105 Ω, L = 76 mH, and C...
An LRC series circuit has with R = 105 Ω, L = 76 mH, and C = 22 μF, is attached to a 120-V (rms) AC power supply with frequency 60 Hz. (a) What is the impedance of the circuit? (b) What is the peak current in the circuit? (c) What is the peak voltage across the resistor? (d) What is the peak voltage across the inductor? (e) What is the peak voltage across the capacitor? (f) What is the...