Question

A hydrogen atom is immersed in a magnetic field so that its energy levels split according...

A hydrogen atom is immersed in a magnetic field so that its energy levels split according to the Zeeman effect. Neglecting any effects due to electron spin, how many unique energy levels are available to an electron in the 4d subshell?

Homework Answers

Answer #1

For the 4d subshell, the principal quantum number is

The orbital angular quantum number (L) ranges from

Therefore,

The magnetic quantum number (ml) ranges from  . So, for 4d subshell the magnetic quantum numbers are,

The number of energy levels is,

Thus, the unique energy levels are available to an electron in the 4d subshell is 7.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In electron spin resonance (ESR) and nuclear magnetic resonance (NMR), the energy levels of electrons or...
In electron spin resonance (ESR) and nuclear magnetic resonance (NMR), the energy levels of electrons or protons, respectively, are split with a magnetic field (otherwise known as the Zeeman effect). Electrons or protons with spin in the same direction as the magnetic field have lower energies than electrons or protons with spins aligned opposite to the field. The energy difference between these levels depends on the strength of the field, so ESR and NMR can be used to measure, very...
Consider the 2p state of the electron in the hydrogen atom. If we apply an external...
Consider the 2p state of the electron in the hydrogen atom. If we apply an external magnetic field B = 0.45 T, how many different energy levels will result and what are their energies relative to the original energy level (in eV)? Be sure to account for spin
A) Sketch a separate diagram for the energy levels of the electron in the Hydrogen atom...
A) Sketch a separate diagram for the energy levels of the electron in the Hydrogen atom – The diagram should be to scale. Annotate the diagram with the ground state energy E0, the principal quantum number n, and the ionization energy of the atom (13.6 eV). B) It is known that a certain hydrogen atom has n=5 and m=2. How many different states are consistent with this information? C) Answer the same question (in terms of n and m) for...
A. Consider a hydrogen atom with one electron and quantized energy levels. The lowest energy level...
A. Consider a hydrogen atom with one electron and quantized energy levels. The lowest energy level (n = 1) is the ground state, with energy -13.6 eV. There are four states corresponding to the next lowest energy (n = 2), each with energy-3.4 eV. For the questions below, consider one of these four states, called one of the first excited states. 2. Assume that this hydrogen atom is present in a gas at room temperature (T ~ 300 K, kBT...
a) If the 3rd energy level of a hypothetical hydrogen-like atom is −1.50×10−18 J, what is...
a) If the 3rd energy level of a hypothetical hydrogen-like atom is −1.50×10−18 J, what is the energy of the 2nd energy level? b) If a photon whose frequency is 2.50×1016 Hz collides with an electron at rest and loses 25.0% of its energy, what is the speed of this electron after collision? c) An electron of a hydrogen atom is on its 4th energy orbit. How many possible photons it could emit?      a)3      b)4      c)5     ...
Suppose that an electron is in an excited state of a Hydrogen atom at the n...
Suppose that an electron is in an excited state of a Hydrogen atom at the n = 4 energy level. (a) How many different states are available for that electron to occupy?(b) Suppose that the electron falls directly to the ground state, causing a single photon to be released from the atom. What is the photon’s wavelength? (c) After its release, the photon collides with an electron at rest, and scatters off at a 60o angle with respect to its...
Suppose that an electron is in an excited state of a Hydrogen atom at the n...
Suppose that an electron is in an excited state of a Hydrogen atom at the n = 4 energy level. (a) How many different states are available for that electron to occupy? (b) Suppose that the electron falls directly to the ground state, causing a single photon to be released from the atom. What is the photon’s wavelength?   (c) After its release, the photon collides with an electron at rest, and scatters off at a 60o angle with respect to...
A hydrogen atom is initially at the ground state and then absorbs energy 13.06 eV. The...
A hydrogen atom is initially at the ground state and then absorbs energy 13.06 eV. The excited state is unstable, and it tends to finally return to its ground state. 8% (a) How many possible wavelengths will be emitted as the atom returns to its ground state? (also draw a diagram of energy levels to illustrate your answer) Answer: (number) ___________ (b) Calculate the longest wavelength emitted. Answer: _________
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.86 eV. The...
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.86 eV. The excited state is unstable, and it tends to finally return to its ground state. 8% (a) How many possible wavelengths will be emitted as the atom returns to its ground state? (also draw a diagram of energy levels to illustrate your answer) Calculate the second shortest wavelength emitted.
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.55 eV. The...
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.55 eV. The excited state is unstable, and it tends to finally return to its ground state. (a) How many possible wavelengths will be emitted as the atom returns to its ground state? draw a diagram of energy levels to illustrate answer     Answer: (number) ________    (b) Calculate the shortest wavelength emitted.        Answer: ________