Question

Use the previous table and rank the difficulty of rotating the following objects: disk, hoop, solid...

Use the previous table and rank the difficulty of rotating the following objects: disk, hoop, solid sphere, or spherical shell. Start from easiest to rotate to hardest to rotate. Assume each objects have the same mass and same radius.

  • For the previous example, if a person wanted to make the moment of inertia to be half as large, he can
  • A.) reduce the mass by 1/2.
  • B.) increase the mass by 2.
  • C.) reduce the radius by 1/2.
  • D.) reduce the radius by 1/√("2" ).
  • E.) increase the mass by 2, reduce the radius by 1/2.
  • F.) reduce the mass by 1/4, and increase the radius by 2.
  • G.) reduce the mass by 1/8, and increase the radius by 2.

Group of answer choices

solid sphere, disk, hoop, spherical shell

disk, hoop, solid sphere, spherical shell

solid sphere, disk, spherical shell, hoop

hoop, spherical shell, solid sphere, disk

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Four objects—a hoop, a solid cylinder, a solid sphere, and a thin, spherical shell—each have a...
Four objects—a hoop, a solid cylinder, a solid sphere, and a thin, spherical shell—each have a mass of 4.06 kg and a radius of 0.253 m. (a) Find the moment of inertia for each object as it rotates about the axes shown in this table. hoop     ___ kg · m2 solid cylinder     ___ kg · m2 solid sphere     ___ kg · m2 thin, spherical shell     ___ kg · m2 (b) Suppose each object is rolled down a ramp. Rank the...
Consider the following four objects: a hoop, a flat disk, a solid sphere, and a hollow...
Consider the following four objects: a hoop, a flat disk, a solid sphere, and a hollow sphere. Each of the objects has mass M and radius R. The axis of rotation passes through the center of each object, and is perpendicular to the plane of the hoop and the plane of the flat disk. If the objects are all spinning with the same angular momentum, which requires the largest torque to stop it? (a) the solid sphere (b) the hollow...
A sphere, hoop, and disk race down an incline 30 m in length and at an...
A sphere, hoop, and disk race down an incline 30 m in length and at an angle of 60 degrees. The sphere, hoop, and disk all have the same mass and radius. a) Using the conservation of energy, derive an equation to calculate the final linear speed as a function of the initial heigh, the acceleration due to gravity, and a constant based on the moment of inertia. b) Calculate the final linear speeds for all 3 objects. c) Which...
Consider a solid sphere and a solid disk with the same radius and the same mass....
Consider a solid sphere and a solid disk with the same radius and the same mass. Explain why the solid disk has a greater moment of inertia than the solid sphere, even though it has the same overall mass and radius.
Problem 4 A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R=...
Problem 4 A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R= 0.5 m) are placed at the top of an incline at height (h= 10.0 m). The objects are released from rest and rolls down without slipping. a) The solid disk reaches to the bottom of the inclined plane before the hoop. explain why? b) Calculate the rotational inertia (moment of inertia) for the hoop. c) Calculate the rotational inertia (moment of inertia) for the...
Three objects: disk, cylinder, and sphere are each rotating at 5 rads/s about an axis through...
Three objects: disk, cylinder, and sphere are each rotating at 5 rads/s about an axis through their center. If the mass and radius of each object is 5 kg and 2 m respectively. (a) What is is the moment of inertia of each object? (b) What is is the angular momentum of each object?
The rotational inertia I of any given body of mass M about any given axis is...
The rotational inertia I of any given body of mass M about any given axis is equal to the rotational inertia of an equivalent hoop about that axis, if the hoop has the same mass M and a radius k given by The radius k of the equivalent hoop is called the radius of gyration of the given body. Using this formula, find the radius of gyration of (a) a cylinder of radius 3.72 m, (b) a thin spherical shell...
Consider the following three objects, each of the same mass and radius: 1) Solid Sphere 2)...
Consider the following three objects, each of the same mass and radius: 1) Solid Sphere 2) Solid Disk 3) Hoop. All three are release from rest at top of an inclined plane. The three objects proceed down the incline undergoing rolling motion without slipping. use work-kinetic energy theorem to determine which object will reach the bottom of the incline first
Four objects with the same mass and radius roll without slipping down an incline. If they...
Four objects with the same mass and radius roll without slipping down an incline. If they all start at the same location, which object will take the longest time to reach the bottom of the incline? Mass Moment of Inertia Table Choices A. A hollow sphere B. A solid sphere C. A thin-wall hollow cylinder D. They all take the same time E. A solid cylinder
The following four objects (each of mass m) roll without slipping down a ramp of height...
The following four objects (each of mass m) roll without slipping down a ramp of height h: Object 1: solid cylinder of radius r Object 2: solid cylinder of radius 2r Object 3: hoop of radius r Object 4: solid sphere of radius 2r Rank these four objects on the basis of their rotational kinetic energy at the bottom of the ramp.