Question

A.) A point charge of +5.56 ?C is located at the center of a sphere with...

A.) A point charge of +5.56 ?C is located at the center of a sphere with a radius of 12.8 cm. Determine the electric flux through the surface of the sphere.

B.) A -2.87 ?C charge is placed at the center of a conducting spherical shell, and a total charge of +8.00 ?C is placed on the shell itself. Calculate the total charge on the outer surface of the conductor.

C.) A 7.59 ?C point charge is placed at the center of a cube with a volume of 5.37 m3. Calculate the electric flux through one side of the cube.

Homework Answers

Answer #1

Part A)

Electric Flux:

   (Ke=Coulombs constant)

(Eo= permittivity of classical vacuum)

Outer Area of sphere= (r is radius of sphere)

With this we find that the electric flux through a spere is:

Result:

--------------------------------------------------------------------------

Part B)

Total charge on outer surface is equal to the sum of all the internal charges:

--------------------------------------------------------------------------------------------

Part C)

The total electric flux through the cube is:

The point charge is placed at the center of the cube, so by symmetry the electric flux through one side of the cube would be (cube has 6 sides):

Result:

  

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A point charge q = −4.0 ✕ 10−12 C is placed at the center of a...
A point charge q = −4.0 ✕ 10−12 C is placed at the center of a spherical conducting shell of inner radius 3.4 cm and outer radius 3.9 cm. The electric field just above the surface of the conductor is directed radially outward and has magnitude 7.5 N/C. a) What is the charge density (in C/m2) on the inner surface of the shell? b) What is the charge density (in C/m2) on the outer surface of the shell? c) What...
A point charge q = +3 µC is at the center of a sphere of radius...
A point charge q = +3 µC is at the center of a sphere of radius 0.9 m. (a) Find the surface area of the sphere. ___m2 (b) Find the magnitude of the electric field at points on the surface of the sphere. ___N/C (c) What is the flux of the electric field due to the point charge through the surface of the sphere? ___ N · m2/C (e) What is the net flux through a cube of side 2...
A point charge of 6.0 nC is placed at the center of a hollow spherical conductor...
A point charge of 6.0 nC is placed at the center of a hollow spherical conductor (inner radius =1.0cm, outer radius =2.0cm) which has a net charge of -4.0 nC. Determine the resulting charge density on the inner surface of the conducting sphere.
A solid insulating sphere of radius a = 2 cm carries a net positive charge Q...
A solid insulating sphere of radius a = 2 cm carries a net positive charge Q = 9 nC uniformly distributed throughout its volume. A conducting spherical shell of inner radius b = 4 cm and outer radius c = 6 cm is concentric with the solid sphere and carries an initial net charge 2Q. Find: a. the charge distribution on the shell when the entire system is in electrostatic equilibrium. b. theelectricfieldatpoint:(i)AwithrA =1cm,(ii)BwithrB =3cm,(iii)CwithrC =5cm from the center of...
A conducting spherical shell of inner radius and outer radius has a charge Q on it....
A conducting spherical shell of inner radius and outer radius has a charge Q on it. The flux through a concentric spherical surface of radius is . An additional charge, also Q, is then added to the sphere. What is the change in flux through a concentric spherical surface of radius when the additional charge is placed on the conducting shell?
A charge is spread out uniformly over a small non-conducting sphere. The small sphere shares a...
A charge is spread out uniformly over a small non-conducting sphere. The small sphere shares a center with a larger spherical shell with an inner radius of 6 ?? and an outer radius of 12 ??. a) Using Gauss’ Law, what is the magnitude of the charge on the nonconducting sphere if the field from the sphere is measured to be 8200 ?/? when 0.5 ?? from the center? b) What is the surface charge density on the inside of...
A point charge + 5.0 ?C is at the center of an electrically neutral spherical shell...
A point charge + 5.0 ?C is at the center of an electrically neutral spherical shell with a radius of 12.0 cm. (i) What is the total electric flux about the sphere shell? (ii) What is the magnitude of the electric field at a distance 0.30 m from the center?
9. A point charge Q = 1.00 × 10−6 C is located at the centre of...
9. A point charge Q = 1.00 × 10−6 C is located at the centre of a non-conducting spherical shell of radius rA = 0.500 m that has a surface charge density of ηA = 1.25 × 10−6 C m−2 . This spherical shell is itself concentric with a conducting shell of radius rB = 1.00 m which initially has the same surface charge density but with opposite sign, i.e., initially, its surface charge density ηB = −ηA. The outer...
A 230 nC point charge is placed at the center of an uncharged spherical conducting shell...
A 230 nC point charge is placed at the center of an uncharged spherical conducting shell 28 cm in radius. a) What is the surface charge density on the outer surface of the shell? Express your answer using two significant figures. b) What is the electric field strength at the shell's outer surface? Express your answer using two significant figures.
A particle with charge of 22.5 µC is placed at the center of a spherical shell...
A particle with charge of 22.5 µC is placed at the center of a spherical shell of radius 28.0 cm. (a) What is the total electric flux through the surface of the shell? (b) What is the total electric flux through any hemispherical surface of the shell? (c) Do the results depend on the radius? (d) Explain your answer.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT