Question

A container with 59 g of water at 23oC is placed in a freezer. How much...

A container with 59 g of water at 23oC is placed in a freezer. How much heat must be removed from the water to turn it to ice at –9 oC? Ignore the heat capacity of the container. Give your answer in kilo-joules (kJ) with 3 significant figures.

Specific heat of ice: 2.090 J/g K

Specific heat of water: 4.186 J/g K

Latent heat of fusion for water: 333 J/g

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let A be the last two digits, let B be the last digit, and let C...
Let A be the last two digits, let B be the last digit, and let C be the sum of the last three digits of your 8-digit student ID. Example: for 20245347, A = 47, B = 7, and C = 14. A container with (15.0 + A) g of water at (8.0 + C) oC is placed in a freezer. How much heat must be removed from the water to turn it to ice at –(5.0 + B) oC?...
A 25 g ice cube at -15.0oC is placed in 169 g of water at 48.0oC....
A 25 g ice cube at -15.0oC is placed in 169 g of water at 48.0oC. Find the final temperature of the system when equilibrium is reached. Ignore the heat capacity of the container and assume this is in a calorimeter, i.e. the system is thermally insulated from the surroundings. Give your answer in oC with 3 significant figures. Specific heat of ice: 2.090 J/g K Specific heat of water: 4.186 J/g K Latent heat of fusion for water: 333...
A 16 g ice cube at -15.0oC is placed in 140 g of water at 48.0oC....
A 16 g ice cube at -15.0oC is placed in 140 g of water at 48.0oC. Find the final temperature of the system when equilibrium is reached. Ignore the heat capacity of the container and assume this is in a calorimeter, i.e. the system is thermally insulated from the surroundings. Give your answer in oC with 3 significant figures. Specific heat of ice: 2.090 J/g K Specific heat of water: 4.186 J/g K Latent heat of fusion for water: 333...
A (10.0+A) g ice cube at -15.0oC is placed in (125+B) g of water at 48.0oC....
A (10.0+A) g ice cube at -15.0oC is placed in (125+B) g of water at 48.0oC. Find the final temperature of the system when equilibrium is reached. Ignore the heat capacity of the container and assume this is in a calorimeter, i.e. the system is thermally insulated from the surroundings. Give your answer in oC with 3 significant figures. Specific heat of ice: 2.090 J/g K Specific heat of water: 4.186 J/g K Latent heat of fusion for water: 333...
A (18) g ice cube at –15.0°C is placed in (126) g of water at 48.0...
A (18) g ice cube at –15.0°C is placed in (126) g of water at 48.0 degreesC. Find the final temperature of the system when equilibrium is reached. Ignore the heat capacity of the container and assume this is in a calorimeter, i.e. the system is thermally insulated from the surroundings. Give your answer in degreesC with 3 significant figures. Specific heat of ice: 2.090 J/(g∙ oC) Specific heat of water: 4.186 J/(g∙ oC) Latent heat of fusion for water:...
( A = 18, B = 93). A (10.0+A) g ice cube at -15.0oC is placed...
( A = 18, B = 93). A (10.0+A) g ice cube at -15.0oC is placed in (125+B) g of water at 48.0oC. Find the final temperature of the system when equilibrium is reached. Ignore the heat capacity of the container and assume this is in a calorimeter, i.e. the system is thermally insulated from the surroundings. Give your answer in oC with 3 significant figures. Specific heat of ice: 2.090 J/g K Specific heat of water: 4.186 J/g K...
A = 13 B = 27 A (10.0+A) g ice cube at -15.0oC is placed in...
A = 13 B = 27 A (10.0+A) g ice cube at -15.0oC is placed in (125+B) g of water at 48.0oC. Find the final temperature of the system when equilibrium is reached. Ignore the heat capacity of the container and assume this is in a calorimeter, i.e. the system is thermally insulated from the surroundings. Give your answer inoC with 3 significant figures. Specific heat of ice: 2.090 J/g K Specific heat of water: 4.186 J/g K Latent heat...
A cube of ice is taken from the freezer at -9.5 ?Cand placed in a 95-g...
A cube of ice is taken from the freezer at -9.5 ?Cand placed in a 95-g aluminum calorimeter filled with 330 g of water at room temperature of 20.0 ?C. The final situation is observed to be all water at 17.0 ?C. The specific heat of ice is 2100 J/kg?C?, the specific heat of aluminum is 900 J/kg?C?, the specific heat of water is is 4186 J/kg?C?, the heat of fusion of water is 333 kJ/Kg. What was the mass...
A cube of ice is taken from the freezer at -9.5 ∘C and placed in a...
A cube of ice is taken from the freezer at -9.5 ∘C and placed in a 95-g aluminum calorimeter filled with 320 g of water at room temperature of 20.0 ∘C. The final situation is observed to be all water at 15.0 ∘C. The specific heat of ice is 2100 J/kg⋅C∘, the specific heat of aluminum is 900 J/kg⋅C∘, the specific heat of water is is 4186 J/kg⋅C∘, the heat of fusion of water is 333 kJ/Kg. What was the...
A cube of ice is taken from the freezer at -6.5 ∘C and placed in a...
A cube of ice is taken from the freezer at -6.5 ∘C and placed in a 95-g aluminum calorimeter filled with 300 g of water at room temperature of 20.0 ∘C. The final situation is observed to be all water at 16.0 ∘C. The specific heat of ice is 2100 J/kg⋅C∘, the specific heat of aluminum is 900 J/kg⋅C∘, the specific heat of water is is 4186 J/kg⋅C∘, the heat of fusion of water is 333 kJ/Kg. Part A What...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT