Question

Using sinusodial plane wave, prove no longitudinal electromagnetic wave exists in a vacuum. Only use Maxwell's...

Using sinusodial plane wave, prove no longitudinal electromagnetic wave exists in a vacuum. Only use Maxwell's equation, not stoke's theorem or divergence theorem.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
2. Prove that no longitudinal electromagnetic wave exists in a vacuum. (10pt, no partial scores) Note:...
2. Prove that no longitudinal electromagnetic wave exists in a vacuum. (10pt, no partial scores) Note: 1. You must start from the Maxwell equation included in the textbook. If you use the form of the Maxwell equation not in the textbook, your score will be 0. 2. Hint: If you prove this from sinusoidal plane wave, you can generalize that it is valid for general wave as well (you can use it without proof.)
Considering you have monochromatic plane electromagnetic wave traveling (in a vacuum) in the positive z direction....
Considering you have monochromatic plane electromagnetic wave traveling (in a vacuum) in the positive z direction. Use Maxwell's equation, show that: C) The electromagnetic wave is transverse D) the B and E fields are perpendicular to each other
In a vacuum (without materials, and without sources for electromagnetic fields), use Maxwell's equations to prove...
In a vacuum (without materials, and without sources for electromagnetic fields), use Maxwell's equations to prove that fields E and B propagate as waves.
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has...
A plane electromagnetic wave traveling in the positive direction of an x axis in vacuum has components Ex = Ey = 0 and Ez = (4.5 V/m) cos[(π × 1015 s-1)(t - x/c)].(a) What is the amplitude of the magnetic field component?
A plane electromagnetic wave, with wavelength 4.0 m, travels in vacuum in the positive direction of...
A plane electromagnetic wave, with wavelength 4.0 m, travels in vacuum in the positive direction of an x axis. The electric field, of amplitude 270 V/m, oscillates parallel to the y axis. What are the (a) frequency, (b) angular frequency, and (c) angular wave number of the wave? (d) What is the amplitude of the magnetic field component? (e) Parallel to which axis does the magnetic field oscillate? (f) What is the time-averaged rate of energy flow associated with this...
A plane electromagnetic wave, with wavelength 2.5 m, travels in vacuum in the positive direction of...
A plane electromagnetic wave, with wavelength 2.5 m, travels in vacuum in the positive direction of an x axis. The electric field, of amplitude 270 V/m, oscillates parallel to the y axis. What are the (a) frequency, (b) angular frequency, and (c) angular wave number of the wave? (d) What is the amplitude of the magnetic field component? (e) Parallel to which axis does the magnetic field oscillate? (f) What is the time-averaged rate of energy flow associated with this...
A plane electromagnetic wave, with wavelength 3.9 m, travels in vacuum in the positive direction of...
A plane electromagnetic wave, with wavelength 3.9 m, travels in vacuum in the positive direction of an x axis. The electric field, of amplitude 360 V/m, oscillates parallel to the y axis. What are the (a) frequency, (b) angular frequency, and (c) angular wave number of the wave? (d) What is the amplitude of the magnetic field component? (e) Parallel to which axis does the magnetic field oscillate? (f) What is the time-averaged rate of energy flow associated with this...
A plane electromagnetic wave with linear polarization of frequency 450 THz (450 × 10¹² Hz) propagates...
A plane electromagnetic wave with linear polarization of frequency 450 THz (450 × 10¹² Hz) propagates in a vacuum along the positive X axis. The amplitude of the electromagnetic wave is ‖?⃗ ‖ = 500 V / m. At x = 0 and at time t = 0 we have: ?⃗ (? = 0, ? = 0) = [0; 150√2; 200√2] ? / ?; 0 <? <?/2 In this context, determine: (a) The general form of the function of the...
A plane-polarized electromagnetic wave in vacuum E (x, t) = E0eikx–iwt (in the epsilon-hat direction); cB(x,...
A plane-polarized electromagnetic wave in vacuum E (x, t) = E0eikx–iwt (in the epsilon-hat direction); cB(x, t) = k × E(x, t) falls at an angle of incidence θ on an infinite plane dielectric of finite depth, where its reflection coefficient is R (the ratio of the incoming Poynting flux to the reflected flux). Assuming all the refracted/transmitted electromagnetic wave is eventually absorbed in the dielectric (that is it does not pass out the other side) use the stress tensor...
A plane electromagnetic wave, with wavelength 3.3 m, travels in vacuum in the positive direction of...
A plane electromagnetic wave, with wavelength 3.3 m, travels in vacuum in the positive direction of an x axis. The electric field, of amplitude 130 V/m, oscillates parallel to the y axis. (a) What is the frequency of the wave?   Hz (b) What is the angular frequency of the wave? rad/s (c) What is the angular number of the wave? rad/m (d) What is the amplitude of the magnetic field component? T (e) Parallel to which axis does the magnetic...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT