Question

A hungry bear weighing 735 N walks out on a beam in an attempt to retrieve...

A hungry bear weighing 735 N walks out on a beam in an attempt to retrieve a basket of goodies hanging at the end of the beam (see the figure below). The beam is uniform, weighs 200 N, and is 5.00 m long, and it is supported by a wire at an angle of θ = 60.0°. The basket weighs 80.0 N.

A horizontal plank is attached at the left end to a vertical wall. A rod with a pulley at the right end extends a distance x horizontally to the right from the wall above the plank. A cable connected to the wall just above the rod goes around the pulley then down and right to the end of the plank, making an acute angle θ with the plank. A basket of goodies hangs down from the right end of the plank and a bear stands on the plank below the rod a distance x from the wall.

(a) Draw a force diagram for the beam. (Submit a file with a maximum size of 1 MB.)

(b) When the bear is at x = 1.04 m, find the tension in the wire supporting the beam.

When the bear is at x = 1.04 m, find the components of the force exerted by the wall on the left end of the beam. (Assume the positive +x direction is to the right and the positive +y direction is upward. Include the sign of the value in your answer.)

Fx =  N
Fy =  N


(c) If the wire can withstand a maximum tension of 800 N, what is the maximum distance the bear can walk before the wire breaks?
m

Homework Answers

Answer #1

Okay, from the diagram description, I got this idea

take torque about left end

Tsin * L = 735 * 1.04 + 200 * 2.5 + 80 * 5

T sin 60 * 5 = 735 * 1.04 + 200 * 2.5 + 80 * 5

so,

T = 384.37 N

_____________________

Fx = T cso 60 =192.2 N

Fy = W + mg + Mg - Tsin 60

Fy = 682.12 N

______________________

use same equation as part (a) , this time we need to solve the distance of bear from left end

800 sin 60 *5 = 735 * x + 200 * 2.5 + 80 * 5

solve for x, I got

x = 3.488 m

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A uniform horizontal beam with length l= 7.1m and weight W b= 420N is attached to...
A uniform horizontal beam with length l= 7.1m and weight W b= 420N is attached to the wall by a pin connection. Its far end is supported by a cable that makes an angle of θ=60° with the beam. Furthermore, a picnic basket of weight WP= 201N is hanging from the far end of the beam. The hungry Yogy bear with a weight of WY= 816N is standing on a beam at a distance d=8.0m from the wall. a) Calculate...
A uniform horizontal beam with length l= 8.2m and weight W b= 345N is attached to...
A uniform horizontal beam with length l= 8.2m and weight W b= 345N is attached to the wall by a pin connection. Its far end is supported by a cable that makes an angle of θ=60° with the beam. Furthermore, a picnic basket of weight WP= 87N is hanging from the far end of the beam. The hungry Yogy bear with a weight of WY= 758N is standing on a beam at a distance d=2.0m from the wall. Calculate the...
A nonuniform beam 4.45 m long and weighing 1.08 kN makes an angle of 25 ∘...
A nonuniform beam 4.45 m long and weighing 1.08 kN makes an angle of 25 ∘ below the horizontal. It is held in position by a frictionless pivot at its upper-right end and by a cable a distance of 3.06 m farther down the beam and perpendicular to it (see Figure 11.31 in the textbook). The center of gravity of the beam is a distance of 1.97 m down the beam from the pivot. Lighting equipment exerts a downward force...
A nonuniform beam 4.44 m long and weighing 1.10 kN makes an angle of 25 ?...
A nonuniform beam 4.44 m long and weighing 1.10 kN makes an angle of 25 ? below the horizontal. It is held in position by a frictionless pivot at its upper-right end and by a cable a distance of 3.02 m farther down the beam and perpendicular to it (see Figure 11.31 in the textbook). The center of gravity of the beam is a distance of 2.04 m down the beam from the pivot. Lighting equipment exerts a downward force...
A person with weight 700 N stands d = 1.00 m away from the wall on...
A person with weight 700 N stands d = 1.00 m away from the wall on a ℓ = 9.00 m beam, as shown in this figure. The weight of the beam is 5,000 N. Define upward as the positive y direction and to the right as the positive x direction. (a) Find the tension in the wire. (Enter the magnitude only.) N (b) Find the horizontal component of the hinge force. (Indicate the direction with the sign of your...
A 560-N uniform rectangular sign 4.00 m wide and 3.00 m high is suspended from a...
A 560-N uniform rectangular sign 4.00 m wide and 3.00 m high is suspended from a horizontal, 6.00-m-long, uniform, 120-N rod as indicated in the figure below. The left end of the rod is supported by a hinge and the right end is supported by a thin cable making a 30.0° angle with the vertical. (Assume the cable is connected to the very end of the 6.00-m-long rod, and that there are 2.00 m separating the wall from the sign.)...
A purple beam is hinged to a wall to hold up a blue sign. The beam...
A purple beam is hinged to a wall to hold up a blue sign. The beam has a mass of mb = 6.1 kg and the sign has a mass of ms = 16.6 kg. The length of the beam is L = 2.89 m. The sign is attached at the very end of the beam, but the horizontal wire holding up the beam is attached 2/3 of the way to the end of the beam. The angle the wire...
In the figure, a uniform beam with a weight of 56.9 N and a length of...
In the figure, a uniform beam with a weight of 56.9 N and a length of 3.75 m is hinged at its lower end, and a horizontal force  of magnitude 58.2 N acts at its upper end. The beam is held vertical by a cable that makes angle θ = 20.8° with the ground and is attached to the beam at height h = 2.04 m. What are (a) the tension in the cable, (b) the x-component of the force on...
hangingbeam A purple beam is hinged to a wall to hold up a blue sign. The...
hangingbeam A purple beam is hinged to a wall to hold up a blue sign. The beam has a mass of mb = 6.7 kg and the sign has a mass of ms = 17.5 kg. The length of the beam is L = 2.86 m. The sign is attached at the very end of the beam, but the horizontal wire holding up the beam is attached 2/3 of the way to the end of the beam. The angle the...
In the figure, a uniform beam of weight 470 N and length 3.6 m is suspended...
In the figure, a uniform beam of weight 470 N and length 3.6 m is suspended horizontally. On the left it is hinged to a wall; on the right it is supported by a cable bolted to the wall at distance D above the beam. The least tension that will snap the cable is 1400 N. What value of D corresponds to that tension?