Question

The plane monochromatic electromagnetic wave has frequency ?,
polarized in the positive ?-axis

direction moving towards the positive ?-axis direction. The
amplitude of the electric field is ?0, and

the start of time is chosen so that at ? = 0, the electric field
has a value ?0/2 at the origin.

Give answers with only the variables above and speed of light is c
and permittivity ?0.

a. Write the electric field of the wave.

b. Find the associated magnetic field.

c. Find the Poynting associated with this wave.

d. Show by direct averaging of the Poynting vector that intensity
of the wave is ? =1/2 c ?0 E0^2

e. Find the expression for the momentum density stored in this
wave

Answer #1

A plane wave of wavelength 100 nm is polarized along z direction
and travelling along -x direction with the electric field amplitude
of 300 V/m (in vacuum). The maximum value of wave is at t=0 and
x=0. Write the wave equation of magnetic field Calculate the
intensity and Poynting vector of electromagnetic wave.

A plane electromagnetic wave, with wavelength 4.0 m, travels in
vacuum in the positive direction of an x axis. The
electric field, of amplitude 270 V/m, oscillates parallel to the
y axis. What are the (a) frequency,
(b) angular frequency, and (c)
angular wave number of the wave? (d) What is the
amplitude of the magnetic field component? (e)
Parallel to which axis does the magnetic field oscillate?
(f) What is the time-averaged rate of energy flow
associated with this...

A plane electromagnetic wave, with wavelength 2.5 m, travels in
vacuum in the positive direction of an x axis. The electric field,
of amplitude 270 V/m, oscillates parallel to the y axis. What are
the (a) frequency, (b) angular frequency, and (c) angular wave
number of the wave? (d) What is the amplitude of the magnetic field
component? (e) Parallel to which axis does the magnetic field
oscillate? (f) What is the time-averaged rate of energy flow
associated with this...

A plane electromagnetic wave, with wavelength 3.9 m, travels in
vacuum in the positive direction of an x axis. The
electric field, of amplitude 360 V/m, oscillates parallel to the
y axis. What are the (a) frequency,
(b) angular frequency, and (c)
angular wave number of the wave? (d) What is the
amplitude of the magnetic field component? (e)
Parallel to which axis does the magnetic field oscillate?
(f) What is the time-averaged rate of energy flow
associated with this...

Write the equation of 60* linearly polarized
electromagnetic plane wave with respect to y axis, the electric
field amplitude of 3V/m, wavelength of 600 nm in free space and
propagating along z direction.

A plane electromagnetic wave traveling in the positive direction
of an x axis in vacuum has components Ex = Ey = 0 and Ez = (4.5
V/m) cos[(π × 1015 s-1)(t - x/c)].(a) What is the amplitude of the
magnetic field component?

A sinusoidal electromagnetic plane wave is traveling in the +y
direction under water, with an index of refraction n = 1.33. The
wave is polarized along the z-axis and has a vacuum wavelength of
A_0 = 500nm.
A. What is the phase velocity of the wavefront in water?
B. What is the wavenumber of the electromagnetic wave in
water?
C. What is the linear frequency of the electromagnetic wave in
water?
D. If the electric field amplitude is 31.0 V/m,...

Suppose that an electromagnetic wave which is linearly polarized
along the x−axis is propagating in vacuum along the z−axis. The
wave is incident on a conductor which is placed at z > 0 region
of the space. The conductor has conductivity σ, magnetic
permeability µ and electric permittivity ε.
(a) Find the characteristic time for the free charge density
which dissipates at the conductor.
(b) Write the Maxwell equations and derive the wave equation for
a plane wave propagating in...

A plane monochromatic electromagnetic wave with wavelength λ =
4.9 cm, propagates through a vacuum. Its magnetic field is
described by B⃗ =(Bxi^+Byj^)cos(kz+ωt) where Bx = 3.8 X 10-6 T, By
= 3.2 X 10-6 T, and i-hat and j-hat are the unit vectors in the +x
and +y directions, respectively.
1) What is f, the frequency of this wave?
2) What is I, the intensity of this wave?
3) What is Sz, the z-component of the Poynting vector at...

A plane monochromatic electromagnetic wave with wavelength λ =
3.2 cm, propagates through a vacuum. Its magnetic field is
described by
B⃗ =(Bxi^+Byj^)cos(kz+ωt)B→=(Bxi^+Byj^)cos(kz+ωt)
where Bx = 3.6 X 10-6 T,
By = 4.4 X 10-6 T, and i-hat and
j-hat are the unit vectors in the +x and +y directions,
respectively.
1)What is f, the frequency of this wave?
2)What is I, the intensity of this wave?
3)What is Sz, the z-component of the Poynting vector
at (x = 0,...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 9 minutes ago

asked 11 minutes ago

asked 14 minutes ago

asked 25 minutes ago

asked 45 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago