Question

The work function for copper is 4.7eV. a) Find the minimum wavelength for which photo-electrons are...

The work function for copper is 4.7eV.

a) Find the minimum wavelength for which photo-electrons are shed

b) What is the energy of the photo-electron if the incident light is 200nm?

c) What happens to the photocurrent and the braking voltage if the intensity of the light is doubled?

d) What happens if the frequency of the light is doubled?

Homework Answers

Answer #2

answered by: anonymous
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The work function for copper is 4.5 eV. (a) Find the threshold frequency and wavelength for...
The work function for copper is 4.5 eV. (a) Find the threshold frequency and wavelength for the photoelectric effect to occur when monochromatic electromagnetic radiation is incident on the surface of a sample of copper. Hz nm (b) Find the maximum kinetic energy of the electrons if the wavelength of the incident light is 190 nm. eV (c) Find the maximum kinetic energy of the electrons if the wavelength of the incident light is 240 nm. eV
The work function for gold is 5.01 eV. (a) Find the threshold frequency and wavelength for...
The work function for gold is 5.01 eV. (a) Find the threshold frequency and wavelength for the photoelectric effect to occur when monochromatic electromagnetic radiation is incident on the surface of a sample of gold. In Hz and nm (b) Find the maximum kinetic energy of the electrons if the wavelength of the incident light is 160 nm.in eV ( c) Find the maximum kinetic energy of the electrons if the wavelength of the incident light is 220 nm. In...
The work function of a surface determines the minimum ______________ of light which will cause electrons...
The work function of a surface determines the minimum ______________ of light which will cause electrons to be emitted. A: wavelength B: frequency C: intensity Visible light has wavelengths ranging from about 400 nm at the violet/blue end of the spectrum up to about 700 nm at the red end of the spectrum. If two sources emit the same number of photons per second, one near the red end of the spectrum will emit ________________ one near the blue end....
The work function of a material is the minimum energy required to emit an electron from...
The work function of a material is the minimum energy required to emit an electron from the material. The work function of Ag is 7.59 x 10^ -19 J a) If I'm in Australia (where a lot more UV light makes it through the depleted ozone layer ...) and I'm wearing silver earrings when the sun comes out irradaiting me with light that has a wavelength of 185 nm, will electrons be emitted from the earrings? b) If radiation hits...
The work function of a material is the minimum energy required to emit an electron from...
The work function of a material is the minimum energy required to emit an electron from the material. The work function of Ag is 7.59*10^-19 J a) If I'm in Australia (where a lot more UV light makes i through the depleted ozone layer...) and I'm wearing silver earrings, when the sun comes out irradiating me with light that has a wavelength of 185 nm, will electrons be emitted from my earrings? b) If radiation hits me that has more...
If the minimum energy (work function) required to eject an electron from a copper surface by...
If the minimum energy (work function) required to eject an electron from a copper surface by the photoelectric effect is 7.81 ✕ 10^−19 J, what is the wavelength (in nanometers) of a photon of that energy?
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus....
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21 V was obtained. What is the threshold frequency of the metal? (format of a.b x 10cdHz) b) Light with a frequency of 5.00 x 1014 Hz illuminates a photoelectric surface that has a work function of 2.10 x 10-19 J. What is the maximum kinetic energy of the emitted photoelectrons? (format of a.bc x 10-de J ) c) Light...
When light of wavelength 300.0 nm is incident on potassium, the emitted electrons have maximum kinetic...
When light of wavelength 300.0 nm is incident on potassium, the emitted electrons have maximum kinetic energy of 2.03 eV. A) Calculate the work function for potassium. B) Calculate the stopping potential if the incident light, instead, has a wavelength of 400.0 nm. C) Now, assume that the incident light has an intensity of 0.01 W/m^2, and that the potassium atom has an area of 0.01 nm^2. Using classical physics, estimate the time required for an energy equal to the...
1. The work function of a certain metal is φ = 2.25 eV. Determine the minimum...
1. The work function of a certain metal is φ = 2.25 eV. Determine the minimum frequency of light f0 for which photoelectrons are emitted from the metal. (Planck's constant is: h = 4.1357×10-15 eVs.) Tries 0/99 2. Determine the corresponding wavelength of light. (Possibly useful constant: hc = 1240 eVnm.) Tries 0/99 3. Calculate the kinetic energy of the emitted electrons if the frequency of the photons is doubled to 2f0.
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the...
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the threshold frequency of this surface? (format of a.bc x 10de Hz) b) What is the stopping voltage of an electron that has 5.40 x 10-19 J of kinetic energy? (3 digit answer) c) A photoelectric surface requires a light of maximum wavelength of 675 nm to cause electron emission. What is the work function (in eV) of this surface? (3 digit answer) d) A...