Question

A 20 kg block is moving to the right at 15 m/s along a horizontal frictionless...

A 20 kg block is moving to the right at 15 m/s along a horizontal frictionless road when it collides with a 40 kg block moving to the right at 5 m/s. After the collision, the 20 kg mass is moving to the right at 12 m/s. Find the velocity of the 40 kg mass after the collision.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right...
A) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides inelastically with an initially stationary block of mass m2=18.0 kg. The two objects become stuck together. Find the final velocity of the two blocks. B) A block of mass m1=6.0 kg is initially moving at 5.0 m/s to the right and collides elastically with an initially stationary block of mass m2=18.0 kg. After the collision, block m2 is moving to the right...
A glider of mass 0.155 kg is moving to the right on a frictionless, horizontal air...
A glider of mass 0.155 kg is moving to the right on a frictionless, horizontal air track with a speed of 0.760 m/s . It has a head-on collision with a glider 0.294 kg that is moving to the left with a speed of 2.29 m/s . Suppose the collision is elastic. Find the magnitude of the final velocity of the 0.155 kg glider. Find the magnitude of the final velocity of the 0.294 kg glider.
A 1.10-kg ball, moving to the right at a velocity of +1.34 m/s on a frictionless...
A 1.10-kg ball, moving to the right at a velocity of +1.34 m/s on a frictionless table, collides head-on with a stationary 6.90-kg ball. Find the final velocities of (a) the 1.10-kg ball and of (b) the 6.90-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 1.40-kg ball, moving to the right at a velocity of +2.87 m/s on a frictionless...
A 1.40-kg ball, moving to the right at a velocity of +2.87 m/s on a frictionless table, collides head-on with a stationary 6.70-kg ball. Find the final velocities of (a) the 1.40-kg ball and of (b) the 6.70-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 1.70-kg ball, moving to the right at a velocity of +1.51 m/s on a frictionless...
A 1.70-kg ball, moving to the right at a velocity of +1.51 m/s on a frictionless table, collides head-on with a stationary 8.10-kg ball. Find the final velocities of (a) the 1.70-kg ball and of (b) the 8.10-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 4.30-kg ball, moving to the right at a velocity of +3.01 m/s on a frictionless...
A 4.30-kg ball, moving to the right at a velocity of +3.01 m/s on a frictionless table, collides head-on with a stationary 8.50-kg ball. Find the final velocities of (a) the 4.30-kg ball and of (b) the 8.50-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 4.80-kg ball, moving to the right at a velocity of +1.26 m/s on a frictionless...
A 4.80-kg ball, moving to the right at a velocity of +1.26 m/s on a frictionless table, collides head-on with a stationary 8.20-kg ball. Find the final velocities of (a) the 4.80-kg ball and of (b) the 8.20-kg ball if the collision is elastic. (c)Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 1.00-kg ball, moving to the right at a velocity of +1.35 m/s on a frictionless...
A 1.00-kg ball, moving to the right at a velocity of +1.35 m/s on a frictionless table, collides head-on with a stationary 8.00-kg ball. Find the final velocities of (a) the 1.00-kg ball and of (b) the 8.00-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A block of mass m1 = 1.90 kg initially moving to the right with a speed...
A block of mass m1 = 1.90 kg initially moving to the right with a speed of 4.6 m/s on a frictionless, horizontal track collides with a spring attached to a second block of mass m2 = 4.8 kg initially moving to the left with a speed of 1.1 m/s.The spring constant is 519 N/m. What if m1 is initially moving at 3.4 m/s while m2 is initially at rest? (a) Find the maximum spring compression in this case. x...
Block 1, of mass m 1 =9.50 kg , moves along a frictionless air track with...
Block 1, of mass m 1 =9.50 kg , moves along a frictionless air track with speed v 1 =27.0 m/s . It collides with block 2 m2 =13.0 kg , which was initially at restThe blocks stick together after the collision. Find the Magnitude p1 of the total inital momentum of the two block system. Find vf, the magnitude of the final velocity of the two block system.