Question

When all quantum numbers are considered, how many different quantum states are there for a hydrogen...

When all quantum numbers are considered, how many different quantum states are there for a hydrogen atom with n=1? With n=2? With n=3? List the quantum numbers of each state.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Quantum Mechanics II (Griffiths) The hydrogen atom is in state n = 3. What is the...
Quantum Mechanics II (Griffiths) The hydrogen atom is in state n = 3. What is the energy of the state in eV? What is the degeneracy? List all possible quantum numbers l and m.
Which of the following are permissable sets of quantum numbers for an electron in a hydrogen...
Which of the following are permissable sets of quantum numbers for an electron in a hydrogen atom? The atom may be in an excited state (ie. the electron need not be in its ground state). Choose all of the correct possibilities. n = 4, l = 3, ml = -3, ms = +1/2 n = 4, l = 2, ml = -2, ms = -1/2 n = 2, l = 1, ml = 0, ms = +1/2 n = 4,...
Which of the following are permissable sets of quantum numbers for an electron in a hydrogen...
Which of the following are permissable sets of quantum numbers for an electron in a hydrogen atom? The atom may be in an excited state (ie. the electron need not be in its ground state). Choose all of the correct possibilities. n = 5, l = 1, ml = -1, ms = -1/2 n = 4, l = 0, ml = 0, ms = -1/2 n = 5, l = -4, ml = -3, ms = -1/2 n = 5,...
Which of the following states of the hydrogen atom, as defined only by the principal quantum...
Which of the following states of the hydrogen atom, as defined only by the principal quantum number, orbital angular momentum quantum number, and magnetic quantum number, is allowed? a. n=0, l =2,ml =1 b. n=5, l =2,ml =3 c. n=0, l =2,ml =2 d. n=5, l =2,ml =0 e. n=2, l =2,ml =0
Quantum numbers arise naturally from the mathematics used to describe the possible states of an electron...
Quantum numbers arise naturally from the mathematics used to describe the possible states of an electron in an atom. The four quantum numbers, the principal quantum number (n), the angular momentum quantum number (ℓ), the magnetic quantum number (mℓ), and the spin quantum number (ms) have strict rules which govern the possible values. Identify allowable combinations of quantum numbers for an electron. Select all that apply. n = 4, ℓ= 0, mℓ= 1, ms= 1/2 n = 3, ℓ= –2,...
Quantum numbers arise naturally from the mathematics used to describe the possible states of an electron...
Quantum numbers arise naturally from the mathematics used to describe the possible states of an electron in an atom. The four quantum numbers, the principal quantum number (n), the angular momentum quantum number (ℓ), the magnetic quantum number (mℓ), and the spin quantum number (ms) have strict rules which govern the possible values. Identify allowable combinations of quantum numbers for an electron. Select all that apply. a) n=4, l=2, ml=3, ms=+1/2 b) n=6, l=6, ml= 1, ms=-1/2 c) n=3, l=1,...
A) Sketch a separate diagram for the energy levels of the electron in the Hydrogen atom...
A) Sketch a separate diagram for the energy levels of the electron in the Hydrogen atom – The diagram should be to scale. Annotate the diagram with the ground state energy E0, the principal quantum number n, and the ionization energy of the atom (13.6 eV). B) It is known that a certain hydrogen atom has n=5 and m=2. How many different states are consistent with this information? C) Answer the same question (in terms of n and m) for...
Point out every mistake with the following set of quantum numbers for an electron in a...
Point out every mistake with the following set of quantum numbers for an electron in a hydrogen atom, and then write a new, valid set of quantum numbers with the magnetic value, and find the energy of that electron for the new quantum numbers you picked using -13.6 eV for the hydrogen ground-state energy: (0,1,-2,-3)
For the 3d state (orbital) of the hydrogen atom, the principal quantum number n=3. The orbital...
For the 3d state (orbital) of the hydrogen atom, the principal quantum number n=3. The orbital quantum number l = 2. For an electron with these quantum numbers, what is the smallest angle (in degrees) that an electron's spin axis (angular momentum axis) can make with respect to an applied magnetic field?
Question 3 Part B:How many values of ml are possible for an electron with orbital quantum...
Question 3 Part B:How many values of ml are possible for an electron with orbital quantum number l = 1? Express your answer as an integer. Part C The quantum state of a particle can be specified by giving a complete set of quantum numbers (n,l, ml,ms). How many different quantum states are possible if the principal quantum number is n = 2? To find the total number of allowed states, first write down the allowed orbital quantum numbers l,...