Question

A certain diatomic molecule absorbs energy by rotating. The first excited rotational state is at an...

A certain diatomic molecule absorbs energy by rotating. The first excited rotational state is at an energy of 0.10 eV above the ground state. What is the energy of the second excited rotational state above the ground state? (a) 0.15 eV (b) 0.20 eV (c) 0.30 eV (d) 0.40 eV

The answer is C please show me how it is that.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A certain diatomic molecule absorbs energy by vibrating. The first excited vibrational state is at an...
A certain diatomic molecule absorbs energy by vibrating. The first excited vibrational state is at an energy of 2.0 meV above the ground state. What is the energy of the second excited vibrational state above the ground state? (a) 2.5 meV (b) 4.0 meV (c) 6.0 meV (d) 8.0 meV The correct answer is B , please show me how it is that.
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.86 eV. The...
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.86 eV. The excited state is unstable, and it tends to finally return to its ground state. 8% (a) How many possible wavelengths will be emitted as the atom returns to its ground state? (also draw a diagram of energy levels to illustrate your answer) Calculate the second shortest wavelength emitted.
A certain molecule has 2.00 eV of rotational energy in the l = 1 state. In...
A certain molecule has 2.00 eV of rotational energy in the l = 1 state. In the l = 5 state, what would its rotational energy be?
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.55 eV. The...
A hydrogen atom is initially at n=2 excited state and then absorbs energy 2.55 eV. The excited state is unstable, and it tends to finally return to its ground state. (a) How many possible wavelengths will be emitted as the atom returns to its ground state? draw a diagram of energy levels to illustrate answer     Answer: (number) ________    (b) Calculate the shortest wavelength emitted.        Answer: ________
A hydrogen atom is initially at the ground state and then absorbs energy 13.06 eV. The...
A hydrogen atom is initially at the ground state and then absorbs energy 13.06 eV. The excited state is unstable, and it tends to finally return to its ground state. 8% (a) How many possible wavelengths will be emitted as the atom returns to its ground state? (also draw a diagram of energy levels to illustrate your answer) Answer: (number) ___________ (b) Calculate the longest wavelength emitted. Answer: _________
A Li atom absorbs with a wavelength 619.6nm, and is excited from the 2s ground state...
A Li atom absorbs with a wavelength 619.6nm, and is excited from the 2s ground state to the 2p excited state. If the first ionization of Li is 520.2kJ/mol, the wavelength of the photon required to ionize the excited Li atom is closest to A) 365.7nm B) 619.6nm C) 273.5nm D) 229.9nm E) 38.18nm
A molecule in its first excited state will spontaneously decay to the ground state by emitting...
A molecule in its first excited state will spontaneously decay to the ground state by emitting a photon. For two samples of two different molecules the lifetime, ?, of this process is 11 ps and 3.5 ns. Calculate the minimum FWHM, Γ, of the resulting spectral lines of the two samples. Explain your answer in terms of the uncertainty principle.
A certain atom has an energy level 2.58 eV above the ground level. Once excited to...
A certain atom has an energy level 2.58 eV above the ground level. Once excited to this level, the atom remains at this level for 1.64E-7 s (on average) before emitting a photon and returning to the ground level. a) What is the energy of the photon (in electron volts)? What is its wavelength (in nanometers)? b) What is the smallest possible uncertainty in energy of the photon? Give your answer in electron volts. c) Show that|?E/E|=|??/?|if |??/?|?1. Use this...
A molecule has three degenerate excited vibrational states, each with excitation energy ? above the ground...
A molecule has three degenerate excited vibrational states, each with excitation energy ? above the ground state. a) At temperature T, what is the ratio between the number of molecules in (all of) these vibrational states and the number in the ground state? b) At very high T, what is this ratio? c) Assume you have N distinguishable molecules of this type. Use the free energy to compute entropy S/k of the system at temperature T d) Compute the number...
1. Consider the diatomic nitrogen molecule N2, which is rotating in the xy plane about the...
1. Consider the diatomic nitrogen molecule N2, which is rotating in the xy plane about the z axis passing through its center, perpendicular to its length. The mass of each nitrogen atom is about m= 2.40×10-26 kg, and at room temperature, the separation between the two-nitrogen atom is d = 1.32×10-10 m. A typical speed of a molecule is 4.60×1012 rad/s. If the nitrogen molecule is rotating with this angular speed about the z axis, what is its rotational kinetic...