Question

A particle moves in a potential field,let V(z)be the potential energy function,V(z)=kz, use the cylindrical coordinates...


A particle moves in a potential field,let V(z)be the potential energy function,V(z)=kz, use the cylindrical coordinates as general coordinates.

(1)Determine the Lagrangian for this particle.

(2)Calculate the generalized impulse for this particle.

(3)Determine the Hamiltonian and the equation of motions for this particle.

(4)Determine the conserved quantity of this system.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle moves in a potential field V(r,z)=az/r, a is constant. Use the cylindrical coordinates as...
A particle moves in a potential field V(r,z)=az/r, a is constant. Use the cylindrical coordinates as the general coordinates. 1)Determine the Lagrangian of this particle. 2)Calculate the generalized impulse. 3)Determine the Hamiltonian of this particle and the Hamiltonian’s equations of motion. 4)Determine the conserved quatities of this system.
Let us consider a particle of mass M moving in one dimension q in a potential...
Let us consider a particle of mass M moving in one dimension q in a potential energy field, V(q), and being retarded by a damping force −2???̇ proportional to its velocity (?̇). - Show that the equation of motion can be obtained from the Lagrangian: ?=?^2?? [ (1/2) ??̇² − ?(?) ] - show that the Hamiltonian is ?= (?² ?^−2??) / 2? +?(?)?^2?? Where ? = ??̇?^−2?? is the momentum conjugate to q. Because of the explicit dependence of...
a particle of mass m moves in three dimension under the action of central conservative force...
a particle of mass m moves in three dimension under the action of central conservative force with potential energy v(r).find the Hamiltonian function in term of spherical polar cordinates ,and show φ,but not θ ,is ignorable .Express the quantity J2=((dθ/dt)2 +sin2 θ(dφ /dt)2) in terms of generalized momenta ,and show that it is a second constant of of the motion
particle of mass m moves under a conservative force where the potential energy function is given...
particle of mass m moves under a conservative force where the potential energy function is given by V = (cx) / (x2 + a2 ), and where c and a are positive constants. Find the position of stable equilibrium and the period of small oscillations about it.
The electric potential in an electric field is given by V(x, y, z)= (-9.40 V/m5)x3y2 +...
The electric potential in an electric field is given by V(x, y, z)= (-9.40 V/m5)x3y2 + (3.85 V/m4)y4 - (9.8 V/m2)zy. Determine the unit vector form E = [ Ex V/m)i + (Ey V/m)j + (Ez V/m)k] of the electric field at the point whose coordinates are (-1.3 m, 2.3 m, 3.1 m). Give the x, y, z components of electric field in the form "+/-abc" V/m, or, "ab.c" V/m as is appropriate. For example, if you calculate the electric...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT