Question

A 1.25 kg block is attached to a spring with spring constant 13.0 N/m . While...

A 1.25 kg block is attached to a spring with spring constant 13.0 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 36.0 cm/s . What are

Part A

The amplitude of the subsequent oscillations?

Express your answer with the appropriate units.

Part B

The block's speed at the point where x= 0.400 A?

Express your answer with the appropriate units.

Homework Answers

Answer #1

Initial energy of spring mass system Ei = (1/2)*m*v^2

final energy after compression Ef = (1/2)*k*A^2


From energy conservation


total energy is conserved

Ef = Ei

(1/2)*k*A^2 = (1/2)*m*v^2


A = v*sqrt(m/k)


A = 36*10^-2*sqrt(1.25/13)

A = 0.11 m   <<--------ANSWER


================================

part B

potential energy at point U = (1/2)*k*x^2

kinetic energy K = (1/2)*m*v^2


total energy E = K + U


but toal energy any point E = (1/2)*K*A^2


K + U = (1/2)*K*A^2

(1/2)*K*x^2 + (1/2)*m*v^2 = (1/2)*K*A^2

Kx^2 + mv^2 + k*A^2

13*(0.4*0.11)^2 + 1.25*v^2 = 13*0.11^2

v = 0.325 m/s <<--------ANSWER

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1.40 kg block is attached to a spring with spring constant 14 N/m . While...
A 1.40 kg block is attached to a spring with spring constant 14 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 47 cm/s . Part A What is the amplitude of the subsequent oscillations? Express your answer in centimeters. Part B What is the block's speed at the point where x=0.65A? Express your answer in centimeters per second.
A 0.850 kg block is attached to a spring with spring constant 18.0 N/m . While...
A 0.850 kg block is attached to a spring with spring constant 18.0 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 31.0 cm/s . What are The amplitude of the subsequent oscillations? The block's speed at the point where x= 0.150 A?
A 0.750 kg block is attached to a spring with spring constant 16 N/m . While...
A 0.750 kg block is attached to a spring with spring constant 16 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 37 cm/s What is the amplitude of the subsequent oscillations? What is the block's speed at the point where x=0.25A?
A 1.35 kg block is attached to a spring with spring constant 18.0 N/m . While...
A 1.35 kg block is attached to a spring with spring constant 18.0 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 50.0 cm/s . What are a) the amplitude of the subsequent oscillations? b) the block's speed at the point where x=0.350 A?
A 1.10 kg block is attached to a spring with spring constant 18.0 N/m . While...
A 1.10 kg block is attached to a spring with spring constant 18.0 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 43.0 cm/s . What is the block's speed at the point where x= 0.650 A? (if the amplitude of the subsequent oscillations is 10.6cm
A 1.40 kg block is attached to a spring with spring constant 16.0 N/m . While...
A 1.40 kg block is attached to a spring with spring constant 16.0 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 44.0 cm/s . What are... A. The amplitude of the subsequent oscillations? B. The block's speed at the point where x= 0.150 A?
A 1.20 kgkg block is attached to a spring with spring constant 18 N/mN/m . While...
A 1.20 kgkg block is attached to a spring with spring constant 18 N/mN/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 34 cm/scm/s. What is the amplitude of the subsequent oscillations? What is the amplitude of the subsequent oscillations?
A 0.700kg block is attached to a spring with spring constant 16N/m . While the block...
A 0.700kg block is attached to a spring with spring constant 16N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 31cm/s . What is the amplitude of the subsequent oscilllations? What is the block's speed at the point where x= 0.30
A 1.15 kg block is attached to a spring with spring constant 15 N/m . While...
A 1.15 kg block is attached to a spring with spring constant 15 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 33 cm/s . Part B What is the block's speed at the point where x=0.15A? Express your answer using two significant figures.
A 1.00 kg block is attached to a spring with spring constant 13.5 N/m . While...
A 1.00 kg block is attached to a spring with spring constant 13.5 N/m . While the block is sitting at rest, a student hits it with a hammer and almost instantaneously gives it a speed of 33.0 cm/s . What is the block's speed at the point where x= 0.450 A?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT