Question

A 50.0 gg marble moving at 2.00 m/sm/s strikes a 26.0 gg marble at rest. Note...

A 50.0 gg marble moving at 2.00 m/sm/s strikes a 26.0 gg marble at rest. Note that the collision is elastic and that it is a "head-on" collision so all motion is along a line.

What is the speed of 50.0 gg marble immediately after the collision?

What is the speed of 26.0 gg marble immediately after the collision?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 50.0 g marble moving at 2.30 m/s strikes a 21.0 g marble at rest. Note...
A 50.0 g marble moving at 2.30 m/s strikes a 21.0 g marble at rest. Note that the collision is elastic and that it is a "head-on" collision so all motion is along a line. a. What is the speed of 50.0 g marble immediately after the collision? b. What is the speed of 21.0 g marble immediately after the collision?
A 44.0 g marble moving at 1.90 m/s strikes a 22.0 g marble at rest. Note...
A 44.0 g marble moving at 1.90 m/s strikes a 22.0 g marble at rest. Note that the collision is elastic and that it is a "head-on" collision so all motion is along a line. What is the speed of 44.0 g marble immediately after the collision? What is the speed of 22.0 g marble immediately after the collision?
A 50 g marble moving at 2.2 m/s strikes a 23 g marble at rest. Assume...
A 50 g marble moving at 2.2 m/s strikes a 23 g marble at rest. Assume the collision is perfectly elastic and the marbles collide head-on.What is the speed of the first marble immediately after the collision?What is the speed of the second marble immediately after the collision?
A 41 g marble moving at 2.0 m/s strikes a 21 g marble at rest. Assume...
A 41 g marble moving at 2.0 m/s strikes a 21 g marble at rest. Assume the collision is perfectly elastic and the marbles collide head-on. a:What is the speed of the first marble immediately after the collision? b:What is the speed of the second marble immediately after the collision?
A marble weighing 100 g is moving 5 m/s It strikes an other marble weighing 40g...
A marble weighing 100 g is moving 5 m/s It strikes an other marble weighing 40g , which is at rest. What is the speed of each marble immediately after the collision? its elastic
A 120 gg ball moving to the right at 4.2 m/sm/s catches up and collides with...
A 120 gg ball moving to the right at 4.2 m/sm/s catches up and collides with a 450 gg ball that is moving to the right at 1.2 m/sm/s Part A: If the collision is perfectly elastic, what is the speed of the 120 gg ball after the collision? Express your answer to two significant figures and include the appropriate units. Part B : If the collision is perfectly elastic, what is the direction of motion of the 120 gg...
A small, 300 gg cart is moving at 1.40 m/sm/s on a frictionless track when it...
A small, 300 gg cart is moving at 1.40 m/sm/s on a frictionless track when it collides with a larger, 4.00 kg cart at rest. After the collision, the small cart recoils at 0.810 m/s. What is the speed of the large cart after the collision?
A small, 200 gg cart is moving at 1.90 m/sm/s on a frictionless track when it...
A small, 200 gg cart is moving at 1.90 m/sm/s on a frictionless track when it collides with a larger, 5.00 kgkg cart at rest. After the collision, the small cart recoils at 0.810 m/sm/s . What is the speed of the large cart after the collision? Express your answer with the appropriate units. A 2.2 kgkg block slides along a frictionless surface at 1.4 m/sm/s . A second block, sliding at a faster 4.4 m/sm/s , collides with the...
A small, 250 gg cart is moving at 1.80 m/sm/s on a frictionless track when it...
A small, 250 gg cart is moving at 1.80 m/sm/s on a frictionless track when it collides with a larger, 3.00 kgkg cart at rest. After the collision, the small cart recoils at 0.820 m/sm/s . v = _____
A 144-gg baseball moving 29 m/sm/s strikes a stationary 5.25-kgkg brick resting on small rollers so...
A 144-gg baseball moving 29 m/sm/s strikes a stationary 5.25-kgkg brick resting on small rollers so it moves without significant friction. After hitting the brick, the baseball bounces straight back, and the brick moves forward at 1.24 m/sm/s .