Question

An excess positive charge Q is uniformly distributed throughout the volume of an insulating solid sphere of radius R = 5.0cm. The magnitude of the bold E with bold rightwards harpoon with barb upwards on top-field at a point 10.0cm from the center of the sphere is given to be 4.5x10^6 N/C.

a. What is the value (in units of *μ**C*) of
charge Q?

b. What is the magnitude of the -field at the surface of the sphere?

c. What is the magnitude of the -field at a point
*2**.0**cm* from the center of the sphere?

d. What is the magnitude of the electric flux through a
spherical Gaussian surface of radius
*7**.**5cm* surrounding the sphere?

Answer #1

Charge Q=+ 3.00 μC is distributed uniformly over the volume of
an insulating sphere that has radius R = 6.00 cm .What is the
potential difference between the center of the sphere and the
surface of the sphere?

A positive charge +Q is distributed uniformly throughout the
volume of an insulating sphere with radius R. Find the electric
potential V at a point P a distance r from the center of the
sphere. Plot the electric potential V vs. the distance r from the
center of the sphere for 0 < r < 2R

Charge Q is distributed uniformly throughout the volume of an
insulating sphere that has radius R. What is the potential
difference between the center of the sphere and the surface of the
sphere?

A solid insulating sphere of radius a = 2 cm carries a net
positive charge Q = 9 nC uniformly distributed throughout its
volume. A conducting spherical shell of inner radius b = 4 cm and
outer radius c = 6 cm is concentric with the solid sphere and
carries an initial net charge 2Q. Find: a. the charge distribution
on the shell when the entire system is in electrostatic
equilibrium. b. theelectricfieldatpoint:(i)AwithrA =1cm,(ii)BwithrB
=3cm,(iii)CwithrC =5cm from the center of...

(physics 2)
Charge Q is distributed uniformly over the volume of an insulating
sphere of radius R. What is the potential difference between the
center of the sphere and the surface of the sphere?

A solid, nonconducting sphere of radius R = 6.0cm is charged
uniformly with an electrical charge of q = 12µC. it is enclosed by
a thin conducting concentric spherical shell of inner radius R, the
net charge on the shell is zero.
a) find the magnitude of the electrical field
E1 inside the sphere (r < R) at the
distance r1 = 3.0 cm from the center.
b) find the magnitude of the electric field E2
outside the shell at the...

A charge is spread out uniformly over a small non-conducting
sphere. The small sphere shares a center with a larger spherical
shell with an inner radius of 6 ?? and an outer radius of 12 ??. a)
Using Gauss’ Law, what is the magnitude of the charge on the
nonconducting sphere if the field from the sphere is measured to be
8200 ?/? when 0.5 ?? from the center? b) What is the surface charge
density on the inside of...

A solid insulating sphere of radius a = 5 cm is fixed at the
origin of a co-ordinate system as shown. The sphere is uniformly
charged with a charge density ρ = -244 μC/m3. Concentric with the
sphere is an uncharged spherical conducting shell of inner radius b
= 13 cm, and outer radius c = 15 cm.
1)What is Ex(P), the x-component of the electric field at point
P, located a distance d = 32 cm from the origin...

An insulating sphere of radius a has charge density p(r) =
P0r^2, where P0 is a constant with appropriate units. The total
charge on the sphere is -3q. Concentric with the insulating sphere
is a conducting spherical shell with inner radius b > a and
utter radius. The total charge on the shell is +2q. Determine
a. the magnitude of the electric field at the following
locations: (i) r < a, (ii) a < r < b, (iii) b <...

5. Consider a system consisting of an insulating sphere of
radius a, with total charge Q uniformly spread throughout its
volume, surrounded by a conducting spherical inner radius b and
outer radius c, having a total charge of -3Q. (a) How much charge
is on each surface of the spherical conducting shell? (b) Find the
electric potential for all r, assuming v=0 at infinity.

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 29 minutes ago

asked 34 minutes ago

asked 58 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago