Question

A 70.0 g sample of copper is at 25.0°C. If 1100 J of energy is added...

A 70.0 g sample of copper is at 25.0°C. If 1100 J of energy is added to it by heat, what is the final temperature of the copper? °C

Homework Answers

Answer #1

1100 J of energy is added to the sample by heat, using the relation-

where, is the mass of the sample

is the specific heat of copper

and is the change in the temperature

Heat added,

Final Temperature is,

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A hot lump of 46.2 g of copper at an initial temperature of 93.9 °C is...
A hot lump of 46.2 g of copper at an initial temperature of 93.9 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the copper and water given that the specific heat of copper is 0.385 J/(g·°C)? Assume no heat is lost to surroundings.
A hot lump of 27.5 g of copper at an initial temperature of 54.7 °C is...
A hot lump of 27.5 g of copper at an initial temperature of 54.7 °C is placed in 50.0 mL of H2O initially at 25.0 °C and allowed to reach thermal equilibrium. What is the final temperature of the copper and water given that the specific heat of copper is 0.385 J/(g·°C)? Assume no heat is lost to surroundings.
300.0 g of copper is heated to 100.0*C and transferred quickly to a calorimeter containing 400.0...
300.0 g of copper is heated to 100.0*C and transferred quickly to a calorimeter containing 400.0 grams of water initially at 25.0*C. If the final temperature is 29.4*C, calculate the specific heat of copper. The specific heat of water is 4.18 J/g-*C. What assumptions must be made about the calorimeter? How is the first law of thermodynamics and law of conservation of energy used in this experiment.
A 24 g block of ice is cooled to −63◦C. It is added to 572 g...
A 24 g block of ice is cooled to −63◦C. It is added to 572 g of water in a 98 g copper calorimeter at a temperature of 30◦C. Find the final temperature. The specific heat of copper is 387 J/kg ·◦C and of ice is 2090 J/kg ·◦C. The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg·◦C. Answer in units of ◦C.
A 31 g block of ice is cooled to −90◦C. It is added to 591 g...
A 31 g block of ice is cooled to −90◦C. It is added to 591 g of water in an 65 g copper calorimeter at a temperature of 26◦C. Find the final temperature. The specific heat of copper is 387 J/kg · ◦C and of ice is 2090 J/kg · ◦C . The latent heat of fusion of water is 3.33 × 105 J/kg and its specific heat is 4186 J/kg · ◦C . Answer in units of ◦C.
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a...
A 6.40 g sample of iron (specific heat capacity = 0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling...
A 6.40 g sample of iron (specific heat capacity =0.451 J/g*C) is placed in a boiling water bath until the temperature of the metal is 100.0*C. The metal is quickly transferred to 119.0g of water at 25.0*C in a calorimeter (specific heat capacity of water = 4.18 J/g*C). Determine the final temperature of the water in the calorimeter (3 significant figures).
A copper cylinder with a mass of 125 g and temperature of 345°C is cooled by...
A copper cylinder with a mass of 125 g and temperature of 345°C is cooled by dropping it into a glass beaker containing 565 g of water initially at 20.0°C. The mass of the beaker is 50.0 g and the specific heat of the glass is 840 J/kg∙K. What is the final equilibrium temperature of the system, assuming the cooling takes place very quickly, so that no energy is lost to the air? The specific heat of copper is 385...
When 1382 J of heat energy is added to 38.6 g of ethanol, C2H6O, the temperature...
When 1382 J of heat energy is added to 38.6 g of ethanol, C2H6O, the temperature increases by 14.6 °C. Calculate the molar heat capacity of C2H6O.
A 42.14−g sample of water at 87.8°C is added to a sample of water at 25.4°C...
A 42.14−g sample of water at 87.8°C is added to a sample of water at 25.4°C in a constant-pressure calorimeter. If the final temperature of the combined water is 40.1°C and the heat capacity of the calorimeter is 26.3 J/°C, calculate the mass of the water originally in the calorimeter. Enter your answer in scientific notation.