Question

The figure bellow shows an electron passing between two charged metal plates that create an 100...

The figure bellow shows an electron passing between two charged metal plates that create an 100 N/C vertical electric field perpendicular to the electron

Homework Answers

Answer #1

force on elctron

F=q*E = -1.6*10^-19 *100 = -160*10^-19 N

this force will work on positive direction of y axis

so ay=F/m =160*10^-19/9.10*10^-31 = 17.58*10^12 m/s^2

ax=0 as there is no horizontal force

so time to travel 4 cm= t = 4*10^-2 /3*10^6 = 1.33*10^-8 sec

as Uy=o

vertical displacement = Sy= ay*t*t /2 = 17.58*10^12*1.33*10^-8*1.33*10^-8/2

= 15.54*10^-4 m

Vy=ay*t=17.58*10^12*1.33*10^-8 = 23.38*10^4 m/s

so , V1=sqrt(Vy^2+Vx^2) ..... as Vx=Ux

V1=sqrt((23.38*10^4)^2+(3*10^6)^2) =3009096.61 m/s

deflectionis given by

tan(theta)=Sy/Sx = 15.54*10^-4/4*10^-2 =0.000003885

theta = tan^-1(0.000003885)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The figure below shows an electron passing between two charged metal plates that create an 85...
The figure below shows an electron passing between two charged metal plates that create an 85 N/C vertical electric field perpendicular to the electron’s original horizontal velocity. (These can be used to change the electron’s direction, such as in an oscilloscope.) The initial speed of the electron is 2.60×106 m/s, and the horizontal distance it travels in the uniform field is 4.30 cm. What is its vertical deflection? What is the vertical component of its final velocity? At what angle...
Two very large charged parallel metal plates are 8.50 cm apart and produce a uniform electric...
Two very large charged parallel metal plates are 8.50 cm apart and produce a uniform electric field of 3.05×106 N/C between them. A proton is fired perpendicular to these plates, starting at the middle of the negative plate and going toward the positive plate. How much work has the electric field done on this proton by the time it reaches the positive plate? Answer in Joules.
7.8 In an electron microscope, there is an electron gun that contains two charged metallic plates...
7.8 In an electron microscope, there is an electron gun that contains two charged metallic plates 2.75 cm apart. An electric force accelerates each electron in the beam from rest to 7.70% of the speed of light over this distance. (Ignore the effects of relativity in your calculations.) (a) Determine the kinetic energy of the electron as it leaves the electron gun. Electrons carry this energy to a phosphorescent viewing screen where the microscope's image is formed, making it glow....
A uniform electric field exists in a region between two oppositely charged plates. An electron is...
A uniform electric field exists in a region between two oppositely charged plates. An electron is released from rest at the surface of the negatively charged plate and strikes the surface of the opposite plate, 5.0 cm away, in a time 1.9 ✕ 10−8 s. (a) What is the speed of the electron as it strikes the second plate? (b) What is the magnitude of the electric field ?
In the figure, an electron is projected horizontally midway between two parallel plates that are separated...
In the figure, an electron is projected horizontally midway between two parallel plates that are separated by 7.75 dm. The electrical field due to the plates has magnitude 517,000 MN/uC between the plates away from the edges. If the plates are 7.30 hm long, find the minimum speed of the electron if it just misses one of the plates as it emerges from the field (which plate will the electron miss?). (e = 1.60 × 10-19 C, ε0 = 8.85...
At some instant the velocity components of an electron moving between two charged parallel plates are...
At some instant the velocity components of an electron moving between two charged parallel plates are vx=2.0×105 m/s and vy=3.1×103 m/s. Suppose the electric field between the plates is uniform and given by E→=(120N/C)j. In unit-vector notation, what are (a) the electron’s acceleration in that field and (b) the electron’s velocity when its x coordinate has changed by 2.4 cm?
A charged particle is fired into a region between two charged plates and is seen to...
A charged particle is fired into a region between two charged plates and is seen to follow the trajectory shown by the dashed line due to the electric force. The top plate is positively charged and the bottom plate is negatively charged. Ignore edge effects throughout the problem. Take the value of electron charge as 1.6 × 10-19 C and the value of dielectric constant as 8.854 × 10-12 C2/N·m2? If the charge density on the surface of the plates...
The separation between two charged metallic plates is 15cm. The electric field between the plates is...
The separation between two charged metallic plates is 15cm. The electric field between the plates is uniform and has an intensity of 3000N/C. An electron is released at rest at a point P precisely over the surface of the negative plate. A) In how much time will it reach the other plate? B) What is its velocity before reaching the plate? Thank you in advance!
The electric field between two square metal plates is 350 N/CN/C . The plates are 2.0...
The electric field between two square metal plates is 350 N/CN/C . The plates are 2.0 mm on a side and are separated by 1.0 cm. What is the charge on each plate (assume equal and opposite)? Neglect edge effects.
An electron beam is passed through two charged parallel plates of length L = 20 cm...
An electron beam is passed through two charged parallel plates of length L = 20 cm and is seen to be deflected by a vertical distance d = 2.5 cm by the time it reaches the end of the plates. If the area between the plates is then filled with a uniform magnetic field B = 10-5 T pointing into the page, the electron beam is observed to be undeflected. What is the speed of the electrons? a) 1.41x106 m/s...