Question

There is a uniform charge distribution of lambda = 4.699

There is a uniform charge distribution of lambda = 4.699

Homework Answers

Answer #1

First, start with:

dE= k*dQ/(r^2)

dQ= ? dL (dL is the change in length)

In the case of the semi-circle the distance from the center of the semicircle to the edge of the circle is radius of the circle

r= R

dE= k*? dL/(R^2)

Now we need to split this into x and y components, but the x component is zero due to symmetry so the y component remains:

dEy= dE sin(T) = (k*? dL/(R^2)) sin(T)

Now the arc length of a circle is

L= R*T
and
dL=R*dT

dEy = (k*? dT/R) sin(T)

Now for integration:

Ey= (k*?/R) int[sin(T) dT] (0,Pi)

Ey= (2*k*?/R)

And R= L/?

Ey= (2?*k*?/L)

Because Ex=0:

E= abs((2?*k*?/L))

E= 14746.67 N/C

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
3) A very long uniform line of charge has charge per unit length (lambda)1 = 4.72...
3) A very long uniform line of charge has charge per unit length (lambda)1 = 4.72 (Mu)C/m and lies along the x-axis. A second long uniform line of charge has charge per unit length (lambda)2 = -2.42 (Mu)C/m and is parallel to the x-axis at y1 = 0.400 m . Part A What is the magnitude of the net electric field at point y2 = 0.200 m on the y-axis? Part C What is the magnitude of the net electric...
An infinite line charge of uniform linear charge density lambda = -2.7 microC/m lies parallel to...
An infinite line charge of uniform linear charge density lambda = -2.7 microC/m lies parallel to the y axis at x = 0 m. A point charge of 3.5 microC is located at x = 1.0 m, y = 2.0 m. Find the x component of the electric field at x = 2.0 m, y = 1.5 m.
Two infinitely long parallel wires have a uniform charge per unit length lambda and -lambda respectively....
Two infinitely long parallel wires have a uniform charge per unit length lambda and -lambda respectively. The wires are parallel with the z axis. The positively charged wire intersects the x axis at x = -a. and the negatively charged wire intersects the ,r axis at ,r = +a. (a) Choose the origin as the reference point where the potential is zero, and express the potential at an arbitrary point (x. y) in the xy plane in terms of .v,...
An infinite line charge of uniform linear charge density lambda = -3.1 mu or micro CC/m...
An infinite line charge of uniform linear charge density lambda = -3.1 mu or micro CC/m lies parallel to the y axis at x = 0 m. A point charge of 0.6 mu or micro CC is located at x = 2.0 m, y = 3.0 m. Find the x component of the electric field at x = 3.0 m, y = 2.5 m. Answer in kN/C
A straight line segment has a length L that carries a uniform line charge lambda which...
A straight line segment has a length L that carries a uniform line charge lambda which extends from z = 0 to z = L. A) Calculate the potential a distance z from the origin. Assume that z > L. B) Calculate the electric field from the potential. C) Show that the electric field from the line charge falls off essentially as a point charge (so 1/z^2) as z gets large and a charge of lambda*L in the z-direction using...
A thin dielectric ring, radius R has a charge distribution (lambda) = acos^2(theta), where (theta) is...
A thin dielectric ring, radius R has a charge distribution (lambda) = acos^2(theta), where (theta) is the usual polar angle and "a" is a constant with units of charge/length. The ring lies centered in the x-y plane. Find the total charge Q on the ring and the potential at the center of the ring. Now suppose the ring has a uniform charge density such that the total charge is still Q. Find the potential at the center of the ring...
Please provide steps, thank you A uniform line charge of linear charge density lambda = 4.3...
Please provide steps, thank you A uniform line charge of linear charge density lambda = 4.3 nC/m extends from x = 0 to x = 5 m. a. Find the electric field on the x axis at x = 6 m. (N/C) b. Find the electric field on the x axis at x = 280 m. (N/C) c. Find the field at x = 280 m, using the approximation that the charge is a point charge at the origin. (N/C)...
E field of a uniform and planar distribution of charge A uniform surface charge density of...
E field of a uniform and planar distribution of charge A uniform surface charge density of 5nC/m2 is present in the region x=0, -2<y<2 and all z. if ε=ε0, find E at: a) PA(3,0,0) b) PB(0,3,0)
A line of uniform positive charge density +lambda extends from x=-L to x=+L as shown in...
A line of uniform positive charge density +lambda extends from x=-L to x=+L as shown in the figure below ( no pic ) its a solid bar from -L too +L , with y axis in the middle @ x=0 , and a point chrge @ x=D ( in the +x , past +L ) 1)What is the total charge in the line in terms of the variables defined in the problem? 2) Determine an expression for the electric field...
Consider a very long cylindrical charge distribution of radius R with a uniform charge density rho....
Consider a very long cylindrical charge distribution of radius R with a uniform charge density rho. Calculate the magnitude of the electric field at distance r<R from the axis of this distribution. Derive using gauss law Show all work please
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT