Question

A proton, with a charge Q = 1.60 × 10−19 Coulombs has an initial velocity as...

A proton, with a charge Q = 1.60 × 10−19 Coulombs has an initial velocity as shown below with a magnitude of v = 2.50 × 105 m/s. Take the proton mass to be M = 1.67 × 10−27 kg. The proton moves in a plane perpendicular to a 3.00 Tesla uniform magnetic field

Calculate the radius, in meters, of the circular path followed by the proton. With respect to the magnetic field lines, are the orbits in the clockwise or counterclockwise sense?

Calculate in seconds the amount of time needed for the proton to complete a circular orbit.

Calculate the frequency in Hertz of the circular orbits.

Please answer

Homework Answers

Answer #1

Please give positive rating if answer is correct. Thanks!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A proton with a charge qp = +e = +1.60 × 10–19 C moves with a...
A proton with a charge qp = +e = +1.60 × 10–19 C moves with a speed v = U × 105 m/s East through the Earth’s magnetic field, which has a value of B = 55.0 ?T and points northward at a particular location. What is the strength of the magnetic force F when the proton moves eastward?
An electron and a proton are moving in circular orbits in the earth’s magnetic field directly...
An electron and a proton are moving in circular orbits in the earth’s magnetic field directly above the earth’s geographic north pole, high above atmosphere, where the field’s magnitude is 40 µT. a) Looking down on the orbits from above, what is the sense of the orbit for each of the particles—clockwise or counterclockwise? b) What is the period of the orbit for the proton? c) What is the frequency of the orbit for the electron
A proton of mass mp=1.67×10−27 kgm​p​​=1.67×10​−27​​ kg and a charge of qp=1.60×10−19 Cq​p​​=1.60×10​−19​​ C is moving...
A proton of mass mp=1.67×10−27 kgm​p​​=1.67×10​−27​​ kg and a charge of qp=1.60×10−19 Cq​p​​=1.60×10​−19​​ C is moving through vacuum at a constant velocity of 10,000 m/s10,000 m/s directly to the east when it enters a region of uniform electric field that points to the south with a magnitude of ∣E⃗∣=∣​E​⃗​​∣=2520 N/C N/C . The region of uniform electric field is 5 mm wide in the east-west direction. How far (in meters) will the proton have been deflected towards the south by...
11.- A proton accelerated from rest by a potential difference acquires a speed of 5000 m...
11.- A proton accelerated from rest by a potential difference acquires a speed of 5000 m / s with which it enters a region in which there is a uniform magnetic field of 0.5 T perpendicular to the direction in which it moves the proton. a. Make a diagram of the forces and trajectory of the proton. b. Determine the radius of the circular trajectory that the proton follows within this region. c. Determine the time it takes to complete...
An electron (m = 9.11×10?31 kg, q = 1.60×10?19 C) travels around a 1.7 mm radius...
An electron (m = 9.11×10?31 kg, q = 1.60×10?19 C) travels around a 1.7 mm radius circular orbit perpendicular to a 2.8 T magnetic field. Its speed is: (a) 0.16c, (b) 0.36c, (c) 0.94c, (d) c, (e) 2.8c.
A proton (e = 1.60 X 10-19 C and m =  1.67 X 10-27 kg) is traveling...
A proton (e = 1.60 X 10-19 C and m =  1.67 X 10-27 kg) is traveling at 90.0° with respect to the direction of a magnetic field of strength 4.50 mT experiences a magnetic forceof 7.50 X 10-17 N. The proton's  kinetic energy is:
A proton (q = 1.6 X 10-19 C, m = 1.67 X 10-27 kg) moving with...
A proton (q = 1.6 X 10-19 C, m = 1.67 X 10-27 kg) moving with constant velocity enters a region containing a constant magnetic field that is directed along the z-axis at (x,y) = (0,0) as shown. The magnetic field extends for a distance D = 0.75 m in the x-direction. The proton leaves the field having a velocity vector (vx, vy) = (3.9 X 105 m/s, 1.9 X 105 m/s). 1)What is v, the magnitude of the velocity...
An ionized helium atom has a mass of 6.6 × 10-27 kg and a speed of...
An ionized helium atom has a mass of 6.6 × 10-27 kg and a speed of 7.1 × 105 m/s. It moves perpendicular to a 0.94-T magnetic field on a circular path that has a 0.016-m radius. Determine whether the charge of the ionized atom is +e or +2e.
A proton, with mass 1.67 × 10-27 kg and charge +1.6 × 10-19 C, is sent...
A proton, with mass 1.67 × 10-27 kg and charge +1.6 × 10-19 C, is sent with velocity 7.1 × 104 m/s in the +x direction into a region where there is a uniform electric field of magnitude 730 V/m in the +y direction. What are the magnitude and direction of the uniform magnetic field in the region, if the proton is to pass through undeflected? Assume that the magnetic field has no x-component and neglect gravitational effects. Draw a...
A point charge moving in a magnetic field of 1.27 Tesla experiences a force of 0.630·10-11...
A point charge moving in a magnetic field of 1.27 Tesla experiences a force of 0.630·10-11 N. The velocity of the charge is perpendicular to the magnetic field. In this problem, we use the points of the compass and `into' and `out of' to indicate directions with respect to the page. If the magnetic field points south and the force points out of the page, then select True or False for the charge Q. a. Q is negative, moving west....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT