Question

Find the momentum of a nucleus having a mass of 8.84 ✕ 10-27 kg that is...

Find the momentum of a nucleus having a mass of 8.84 ✕ 10-27 kg that is moving at 0.3c. kg·m/s

Homework Answers

Answer #1

Ans

Momentum of nucleus = 8.34 10-19 Kg.m/s

Explanation

Mass of nucleus M = 8.84 10-27 Kg

Velocity of nucleus v = 0.3c m/s

c = Speed of light = 3 108 m/s

Thus v = 0.3 3 108 = 0.9 108 m/s

The momentum of the nucleus is given by

P = 8.34 10-19 Kg.m/s

Cheers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An alpha particle is a helium nucleus with a mass of 6.68×10−27 kg. Suppose an alpha...
An alpha particle is a helium nucleus with a mass of 6.68×10−27 kg. Suppose an alpha particle moves with a speed of 0.653c. a. Find the magnitude of its momentum. b. What is the total energy of the particle? c. What is its rest energy? d. What is its relativistic kinetic energy? 2. Laboratory experimenters measure the lifetime of a neutron at rest to be 1.80 s. They then measure its lifetime to be 5.13 s when it was moving....
A particle has a rest mass of 6.35 × 10 − 27 kg and a momentum...
A particle has a rest mass of 6.35 × 10 − 27 kg and a momentum of 5.73 × 10 − 18 kg ⋅ m/s . Determine the total relativistic energy of the particle. E = J Find the ratio of the particle's relativistic kinetic energy to its rest energy. K E rest =
An unstable nucleus of mass 1.7 ✕ 10−26 kg, initially at rest at the origin of...
An unstable nucleus of mass 1.7 ✕ 10−26 kg, initially at rest at the origin of a coordinate system, disintegrates into three particles. One particle, having a mass of m1 = 2.6 ✕ 10−27 kg, moves in the positive y-direction with speed v1 = 5.4 ✕ 106 m/s. Another particle, of mass m2 = 8.0 ✕ 10−27 kg, moves in the positive x-direction with speed v2 = 3.4 ✕ 106 m/s. Find the magnitude and direction of the velocity of...
An unstable nucleus of mass 2.1 ? 10?26 kg, initially at rest at the origin of...
An unstable nucleus of mass 2.1 ? 10?26 kg, initially at rest at the origin of a coordinate system, disintegrates into three particles. One particle, having a mass of m1 = 4.6 ? 10?27 kg, moves in the positive y-direction with speed v1 = 6.1 ? 106 m/s. Another particle, of mass m2 = 8.5 ? 10?27 kg, moves in the positive x-direction with speed v2 = 4.5 ? 106 m/s. Find the magnitude and direction of the velocity of...
Calculate the de Broglie wavelength of helium nucleus (mass = 6.64 x 10^-27 kg) moving at...
Calculate the de Broglie wavelength of helium nucleus (mass = 6.64 x 10^-27 kg) moving at a velocity of 2.54 x 10^7 m/s A. 6.57 x 10^-14 m B. 3.96 x 10^-15 m C. 8.68 x 10^-59 m D. 4.55 x 10^8 E. 8.64 x 10^-16
The nucleus of a certian atom 3.8X10^-25 Kg and is at rest. The nucleus is redioactive...
The nucleus of a certian atom 3.8X10^-25 Kg and is at rest. The nucleus is redioactive and suddenly ejects from itself a particle of mass 6.6X10^-27 Kg and speed 1.5X10^7. Apply the conservation of momentum before = Momentum after. Find the recoil speed of the nucleus that is left behind.
An unstable atomic nucleus of mass 1.84 10-26 kg initially at rest disintegrates into three particles....
An unstable atomic nucleus of mass 1.84 10-26 kg initially at rest disintegrates into three particles. One of the particles, of mass 5.00 ✕ 10-27 kg, moves along the y axis with a velocity of 6.00 ✕ 106 m/s. Another particle, of mass 8.40 ✕ 10-27 kg, moves along the x axis with a speed of 4.00 ✕ 106 m/s. Find the following. (a) the velocity of the third particle ( î + ĵ) m/s (b) the total kinetic energy...
A proton (1.6726 × 10-27 kg) and a neutron (1.6749 × 10-27 kg) at rest combine...
A proton (1.6726 × 10-27 kg) and a neutron (1.6749 × 10-27 kg) at rest combine to form a deuteron, the nucleus of deuterium or "heavy hydrogen." In this process, a gamma ray (high-energy photon) is emitted, and its energy is measured to be 2.2 MeV (2.2 × 106 eV). (a) Keeping all five significant figures, what is the mass of the deuteron? Assume that you can neglect the small kinetic energy of the recoiling deuteron. (b) Momentum must be...
Calculate the magnitude of the linear momentum for the following cases. (a) a proton with mass...
Calculate the magnitude of the linear momentum for the following cases. (a) a proton with mass 1.67 10-27 kg, moving with a speed of 4.35 106 m/s kg · m/s (b) a 16.0-g bullet moving with a speed of 385 m/s kg · m/s (c) a 79.0-kg sprinter running with a speed of 11.0 m/s kg · m/s (d) the Earth (mass = 5.98 1024 kg) moving with an orbital speed equal to 2.98 104 m/s. kg · m/s
Calculate the magnitude of the linear momentum for the following cases. (a) a proton with mass...
Calculate the magnitude of the linear momentum for the following cases. (a) a proton with mass 1.67 10-27 kg, moving with a speed of 4.30 106 m/s kg · m/s (b) a 13.0-g bullet moving with a speed of 335 m/s kg · m/s (c) a 70.0-kg sprinter running with a speed of 10.0 m/s kg · m/s (d) the Earth (mass = 5.98 1024 kg) moving with an orbital speed equal to 2.98 104 m/s. kg · m/s
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT